843 research outputs found
Tuning gaps and phases of a two-subband system in a quantizing magnetic field
In this work we study the properties of a two-subband quasi-two-dimensional
electron system in a strong magnetic field when the electron filling factor is
equal to four. When the cyclotron energy is close to the intersubband splitting
the system can be mapped onto a four-level electron system with an effective
filling factor of two. The ground state is either a ferromagnetic state or a
spin-singlet state, depending on the values of the inter-level splitting and
Zeeman energy. The boundaries between these phases are strongly influenced by
the inter-electron interaction. A significant exchange-mediated enhancement of
the excitation gap results in the suppression of the electron-phonon
interaction. The rate of absorption of non-equilibrium phonons is calculated as
a function of Zeeman energy and inter-subband splitting. The phonon absorption
rate has two peaks as a function of intersubband splitting and has a step-like
structure as a function of Zeeman energy
A lower bound on the local extragalactic magnetic field
Assuming that the hard gamma-ray emission of Cen A is a result of synchrotron
radiation of ultra-relativistic electrons, we derive a lower bound on the local
extragalactic magnetic field, G. This result is consistent with
(and close to) upper bounds on magnetic fields derived from consideration of
cosmic microwave background distortions and Faraday rotation measurements.Comment: Includes extensive discussion of particle acceleration above 10^20 eV
in the hot spot-like region of Cen
Instability of a Bose-Einstein Condensate with Attractive Interaction
We study the stability of a Bose-Einstein condensate of harmonically trapped
atoms with negative scattering length, specifically lithium 7. Our method is to
solve the time-dependent nonlinear Schrodinger equation numerically. For an
isolated condensate, with no gain or loss, we find that the system is stable
(apart from quantum tunneling) if the particle number N is less than a critical
number N_c. For N > N_c, the system collapses to high-density clumps in a
region near the center of the trap. The time for the onset of collapse is on
the order of 1 trap period. Within numerical uncertainty, the results are
consistent with the formation of a "black hole" of infinite density
fluctuations, as predicted by Ueda and Huang. We obtain numerically N_c
approximately 1251. We then include gain-loss mechanisms, i.e., the gain of
atoms from a surrounding "thermal cloud", and the loss due to two- and
three-body collisions. The number N now oscillates in a steady state, with a
period of about 145 trap periods. We obtain N_c approximately 1260 as the
maximum value in the oscillations.Comment: Email correspondence to [email protected] ; 18 pages and 9 EPS
figures, using REVTeX and BoxedEPS macro
Anisotropy at the end of the cosmic ray spectrum?
The starburst galaxies M82 and NGC253 have been proposed as the primary
sources of cosmic rays with energies above eV. For energies \agt
10^{20.3} eV the model predicts strong anisotropies. We calculate the
probabilities that the latter can be due to chance occurrence. For the highest
energy cosmic ray events in this energy region, we find that the observed
directionality has less than 1% probability of occurring due to random
fluctuations. Moreover, during the first 5 years of operation at Auger, the
observation of even half the predicted anisotropy has a probability of less
than to occur by chance fluctuation. Thus, this model can be subject
to test at very small cost to the Auger priors budget and, whatever the outcome
of that test, valuable information on the Galactic magnetic field will be
obtained.Comment: Final version to be published in Physical Review
Probing mSUGRA via the Extreme Universe Space Observatory
An analysis is carried out within mSUGRA of the estimated number of events
originating from upward moving ultra-high energy neutralinos that could be
detected by the Extreme Universe Space Observatory (EUSO). The analysis
exploits a recently proposed technique that differentiates ultra-high energy
neutralinos from ultra-high energy neutrinos using their different absorption
lengths in the Earth's crust. It is shown that for a significant part of the
parameter space, where the neutralino is mostly a Bino and with squark mass
TeV, EUSO could see ultra-high energy neutralino events with
essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the
unprecedented aperture of EUSO makes the telescope sensitive to neutralino
fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1}
sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive
particles' -body hadronic decay. The case in which the flux of ultra-high
energy neutralinos is produced via decay of metastable heavy particles with
uniform distribution throughout the universe is analyzed in detail. The
normalization of the ratio of the relics' density to their lifetime has been
fixed so that the baryon flux produced in the supermassive particle decays
contributes to about 1/3 of the events reported by the AGASA Collaboration
below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete
agreement with EGRET data. For this particular case, EUSO will collect between
4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's
planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also
briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical
Review
Reconstruction of Black Hole Metric Perturbations from Weyl Curvature
Perturbation theory of rotating black holes is usually described in terms of
Weyl scalars and , which each satisfy Teukolsky's complex
master wave equation and respectively represent outgoing and ingoing radiation.
On the other hand metric perturbations of a Kerr hole can be described in terms
of (Hertz-like) potentials in outgoing or ingoing {\it radiation
gauges}. In this paper we relate these potentials to what one actually computes
in perturbation theory, i.e and . We explicitly construct
these relations in the nonrotating limit, preparatory to devising a
corresponding approach for building up the perturbed spacetime of a rotating
black hole. We discuss the application of our procedure to second order
perturbation theory and to the study of radiation reaction effects for a
particle orbiting a massive black hole.Comment: 6 Pages, Revtex
The Renormalization Group in Nuclear Physics
Modern techniques of the renormalization group (RG) combined with effective
field theory (EFT) methods are revolutionizing nuclear many-body physics. In
these lectures we will explore the motivation for RG in low-energy nuclear
systems and its implementation in systems ranging from the deuteron to neutron
stars, both formally and in practice. Flow equation approaches applied to
Hamiltonians both in free space and in the medium will be emphasized. This is a
conceptually simple technique to transform interactions to more perturbative
and universal forms. An unavoidable complication for nuclear systems from both
the EFT and flow equation perspective is the need to treat many-body forces and
operators, so we will consider these aspects in some detail. We'll finish with
a survey of current developments and open problems in nuclear RG.Comment: 37 pages; 49th Schladming Theoretical Physics Winter School lecture
notes; to appear in Nucl. Phys. B Proc. Suppl. (2012
The imposition of Cauchy data to the Teukolsky equation I: The nonrotating case
Gravitational perturbations about a Kerr black hole in the Newman-Penrose
formalism are concisely described by the Teukolsky equation. New numerical
methods for studying the evolution of such perturbations require not only the
construction of appropriate initial data to describe the collision of two
orbiting black holes, but also to know how such new data must be imposed into
the Teukolsky equation. In this paper we show how Cauchy data can be
incorporated explicitly into the Teukolsky equation for non-rotating black
holes. The Teukolsky function and its first time derivative
can be written in terms of only the 3-geometry and the
extrinsic curvature in a gauge invariant way. Taking a Laplace transform of the
Teukolsky equation incorporates initial data as a source term. We show that for
astrophysical data the straightforward Green function method leads to divergent
integrals that can be regularized like for the case of a source generated by a
particle coming from infinity.Comment: 9 pages, REVTEX. Misprints corrected in formulas (2.4)-(2.7). Final
version to appear in PR
Quantum railroads and directed localization at the juncture of quantum Hall systems
The integer quantum Hall effect (QHE) and one-dimensional Anderson
localization (AL) are limiting special cases of a more general phenomenon,
directed localization (DL), predicted to occur in disordered one-dimensional
wave guides called "quantum railroads" (QRR). Here we explain the surprising
results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of
electron transfer between edges of two-dimensional electron systems and
identify experimental evidence of QRR's in the general, but until now entirely
theoretical, DL regime that unifies the QHE and AL. We propose direct
experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.
- …