334 research outputs found
Partial Quantifier Elimination By Certificate Clauses
We study partial quantifier elimination (PQE) for propositional CNF formulas.
In contrast to full quantifier elimination, in PQE, one can limit the set of
clauses taken out of the scope of quantifiers to a small subset of target
clauses. The appeal of PQE is twofold. First, PQE can be dramatically simpler
than full quantifier elimination. Second, it provides a language for performing
incremental computations. Many verification problems (e.g. equivalence checking
and model checking) are inherently incremental and so can be solved in terms of
PQE. Our approach is based on deriving clauses depending only on unquantified
variables that make the target clauses . Proving redundancy
of a target clause is done by construction of a ``certificate'' clause implying
the former. We describe a PQE algorithm called that employs
the approach above. We apply to generating properties of a
design implementation that are not implied by specification. The existence of
an property means that this implementation is buggy. Our
experiments with HWMCC-13 benchmarks suggest that can be used
for generating properties of real-life designs
Partial Quantifier Elimination
We consider the problem of Partial Quantifier Elimination (PQE). Given
formula exists(X)[F(X,Y) & G(X,Y)], where F, G are in conjunctive normal form,
the PQE problem is to find a formula F*(Y) such that F* & exists(X)[G] is
logically equivalent to exists(X)[F & G]. We solve the PQE problem by
generating and adding to F clauses over the free variables that make the
clauses of F with quantified variables redundant. The traditional Quantifier
Elimination problem (QE) is a special case of PQE where G is empty so all
clauses of the input formula with quantified variables need to be made
redundant. The importance of PQE is twofold. First, many problems are more
naturally formulated in terms of PQE rather than QE. Second, in many cases PQE
can be solved more efficiently than QE. We describe a PQE algorithm based on
the machinery of dependency sequents and give experimental results showing the
promise of PQE
Verification of Sequential Circuits by Tests-As-Proofs Paradigm
We introduce an algorithm for detection of bugs in sequential circuits. This
algorithm is incomplete i.e. its failure to find a bug breaking a property P
does not imply that P holds. The appeal of incomplete algorithms is that they
scale better than their complete counterparts. However, to make an incomplete
algorithm effective one needs to guarantee that the probability of finding a
bug is reasonably high. We try to achieve such effectiveness by employing the
Test-As-Proofs (TAP) paradigm. In our TAP based approach, a counterexample is
built as a sequence of states extracted from proofs that some local variations
of property P hold. This increases the probability that a) a representative set
of states is examined and that b) the considered states are relevant to
property P.
We describe an algorithm of test generation based on the TAP paradigm and
give preliminary experimental results
- …