78 research outputs found

    Measuring the quadrature coherence scale on a cloud quantum computer

    Full text link
    Coherence underlies quantum phenomena, yet it is manifest in classical theories; delineating coherence's role is a fickle business. The quadrature coherence scale (QCS) was invented to remove such ambiguity, quantifying quantum features of any single-mode bosonic system without choosing a preferred orientation of phase space. The QCS is defined for any state, reducing to well-known quantities in appropriate limits, including Gaussian and pure states, and perhaps most importantly for a coherence measure, it is highly sensitive to decoherence. Until recently, it was unknown how to measure the QCS; we here report on an initial measurement of the QCS for squeezed light and thermal states of light. This is performed using Xanadu's machine Borealis, accessed through the cloud, which offers the configurable beam splitters and photon-number-resolving detectors essential for measuring the QCS. The data and theory match well, certifying the usefulness of interferometers and photon-counting devices in certifying quantumness.Comment: 11 pages including 4 figures and 1 appendix; close to published versio

    Beyond transcoherent states: Field states for effecting optimal coherent rotations on single or multiple qubits

    Full text link
    Semiclassically, laser pulses can be used to implement arbitrary transformations on atomic systems; quantum mechanically, residual atom-field entanglement spoils this promise. Transcoherent states are field states that fix this problem in the fully quantized regime by generating perfect coherence in an atom initially in its ground or excited state. We extend this fully quantized paradigm in four directions: First, we introduce field states that transform an atom from its ground or excited state to any point on the Bloch sphere without residual atom-field entanglement. The best strong pulses for carrying out rotations by angle θ\theta are are squeezed in photon-number variance by a factor of sincθ\rm{sinc}\theta. Next, we investigate implementing rotation gates, showing that the optimal Gaussian field state for enacting a θ\theta pulse on an atom in an arbitrary, unknown initial state is number squeezed by less: sincθ2\rm{sinc}\tfrac{\theta}{2}. Third, we extend these investigations to fields interacting with multiple atoms simultaneously, discovering once again that number squeezing by π2\tfrac{\pi}{2} is optimal for enacting π2\tfrac{\pi}{2} pulses on all of the atoms simultaneously, with small corrections on the order of the ratio of the number of atoms to the average number of photons. Finally, we find field states that best perform arbitrary rotations by θ\theta through nonlinear interactions involving mm-photon absorption, where the same optimal squeezing factor is found to be sincθ\rm{sinc}\theta. Backaction in a wide variety of atom-field interactions can thus be mitigated by squeezing the control fields by optimal amounts.Comment: Updated formatting following acceptance in Quantu
    • …
    corecore