70 research outputs found
Do Cosmological Perturbations Have Zero Mean?
A central assumption in our analysis of cosmic structure is that cosmological
perturbations have zero ensemble mean. This property is one of the consequences
of statistically homogeneity, the invariance of correlation functions under
spatial translations. In this article we explore whether cosmological
perturbations indeed have zero mean, and thus test one aspect of statistical
homogeneity. We carry out a classical test of the zero mean hypothesis against
a class of alternatives in which perturbations have non-vanishing means, but
homogeneous and isotropic covariances. Apart from Gaussianity, our test does
not make any additional assumptions about the nature of the perturbations and
is thus rather generic and model-independent. The test statistic we employ is
essentially Student's t statistic, applied to appropriately masked,
foreground-cleaned cosmic microwave background anisotropy maps produced by the
WMAP mission. We find evidence for a non-zero mean in a particular range of
multipoles, but the evidence against the zero mean hypothesis goes away when we
correct for multiple testing. We also place constraints on the mean of the
temperature multipoles as a function of angular scale. On angular scales
smaller than four degrees, a non-zero mean has to be at least an order of
magnitude smaller than the standard deviation of the temperature anisotropies.Comment: 31 pages, 4 tables, 6 figure
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis.
To enable intravascular detection of inflammation in atherosclerosis, we developed a near-infrared fluorescence (NIRF) catheter-based strategy to sense cysteine protease activity during vascular catheterization. METHODS AND RESULTS: The NIRF catheter design was based on a clinical coronary artery guidewire. In phantom studies of NIRF plaques, blood produced only a mild (<30%) attenuation of the fluorescence signal compared with saline, affirming the favorable optical properties of the NIR window. Catheter evaluation in vivo used atherosclerotic rabbits (n=11). Rabbits received an injection of a cysteine protease-activatable NIRF imaging agent (Prosense750; excitation/emission, 750/770 nm) or saline. Catheter pullbacks through the blood-filled iliac artery detected NIRF signals 24 hours after injection of the probe. In the protease agent group, the in vivo peak plaque target-to- BACKGROUND: <0.05). Ex vivo fluorescence reflectance imaging corroborated these results (target-to- BACKGROUND: <0.01). In the protease group only, saline flush-modulated NIRF signal profiles further distinguished atheromata from normal segments in vivo (P<0.01). Good correlation between the in vivo and ex vivo plaque target-to- BACKGROUND: =0.82, P<0.01). Histopathological analyses demonstrated strong NIRF signal in plaques only from the protease agent group. NIRF signals colocalized with immunoreactive macrophages and the cysteine protease cathepsin B. CONCLUSIONS: An intravascular fluorescence catheter can detect cysteine protease activity in vessels the size of human coronary arteries in real time with an activatable NIRF agent. This strategy could aid in the detection of inflammation and high-risk plaques in small arteries
- …