9 research outputs found
Database for CO2 separation performances of MOFs based on computational materials screening
Metal-organic frameworks (MOFs) are potential adsorbents for CO2 capture. Because thousands of MOFs exist, computational studies become very useful in identifying the top performing materials for target applications in a time-effective manner. In this study, molecular simulations were performed to screen the MOF database to identify the best materials for CO2 separation from flue gas (CO2/N-2) and landfill gas (CO2/CH4) under realistic operating conditions. We validated the accuracy of our computational approach by comparing the simulation results for the CO2 uptakes, CO2/N-2 and CO2/CH4 selectivities of various types of MOFs with the available experimental data. Binary CO2/N-2 and CO2/CH4 mixture adsorption data were then calculated for the entire MOF database. These data were then used to predict selectivity, working capacity, regenerability, and separation potential of MOFs. The top performing MOF adsorbents that can separate CO2/N-2 and CO2/CH4 with high performance were identified. Molecular simulations for the adsorption of a ternary CO2/N-2/CH4 mixture were performed for these top materials to provide a more realistic performance assessment of MOF adsorbents. The structure-performance analysis showed that MOFs with Delta Q(st)(0) > 30 kJ/mol, 3.8 angstrom 1 g/cm(3) are the best candidates for selective separation of CO2 from flue gas and landfill gas. This information will be very useful to design novel MOFs exhibiting high CO2 separation potentials. Finally, an online, freely accessible database https://cosmoserc.ku.edu.tr was established, for the first time in the literature, which reports all of the computed adsorbent metrics of 3816 MOFs for CO2/N-2, CO2/CH4, and CO2/N-2/CH4 separations in addition to various structural properties of MOFs.European Research Counci
A PCE-based rheology modifier allows machining of solid cast green bodies of alumina
The performance of a poly(carboxylate ether) (PCE)-based superplasticizer to enable the machining of green bodies that are solid cast from suspensions of alumina was investigated. An alumina loading of 35 vol% in the presence of 1.25 wt% superplasticizer was established to be suitable for lathing and removal of significant amount of material through drilling. A reduction of 77% in the diameter of green bodies that corresponds to a 59% reduction in volume was achieved. The lathed green bodies exhibited smooth terraces without visible cracks. All of the green bodies were sintered without a polymer burnout step
Computationally guided synthesis of a hierarchical [4[2+3]+6] porous organic ‘cage of cages’
Here we report a two-step, hierarchical synthesis that assembles a trigonal prismatic organic cage into a more symmetric, higher-order tetrahedral cage, or ‘cage of cages’. Both the preformed [2+3] trigonal prismatic cage building blocks and the resultant tetrahedral [4[2+3]+6]cage molecule are constructed using ether bridges. This strategy affords the [4[2+3]+6]cage molecule excellent hydrolytic stability that is not a feature of more common dynamic cage linkers, such as imines. Despite its relatively high molar mass (3,001 g mol−1), [4[2+3]+6]cage exhibits good solubility and crystallizes into a porous superstructure with a surface area of 1,056 m2 g−1. By contrast, the [2+3] building block is not porous. The [4[2+3]+6]cage molecule shows high CO2 and SF6 uptakes due to its polar skeleton. The preference for the [4[2+3]+6]cage molecule over other cage products can be predicted by computational modelling, as can its porous crystal packing, suggesting a broader design strategy for the hierarchical assembly of organic cages with synthetically engineered functions. (Figure presented.)</p
Computationally guided synthesis of a hierarchical [4[2 + 3] + 6] porous organic ‘cage of cages’
Here we report a two-step, hierarchical synthesis that assembles a trigonal prismatic organic cage into a more symmetric, higher-order tetrahedral cage, or ‘cage of cages’. Both the preformed [2+3] trigonal prismatic cage building blocks and the resultant tetrahedral [4[2+3]+6]cage molecule are constructed using ether bridges. This strategy affords the [4[2+3]+6]cage molecule excellent hydrolytic stability that is not a feature of more common dynamic cage linkers, such as imines. Despite its relatively high molar mass (3,001 g mol
−1), [4[2+3]+6]cage exhibits good solubility and crystallizes into a porous superstructure with a surface area of 1,056 m
2 g
−1. By contrast, the [2+3] building block is not porous. The [4[2+3]+6]cage molecule shows high CO
2 and SF
6 uptakes due to its polar skeleton. The preference for the [4[2+3]+6]cage molecule over other cage products can be predicted by computational modelling, as can its porous crystal packing, suggesting a broader design strategy for the hierarchical assembly of organic cages with synthetically engineered functions. (Figure presented.)</p
Photoresponsive Organic Cages─Computationally Inspired Discovery of Azobenzene-Derived Organic Cages
The incorporation of photoresponsive groups into porous materials is attractive as it offers potential advantages in controlling the pore size and selectivity to guest molecules. A combination of computational modeling and experiment resulted in the synthesis of two azobenzene-derived organic cages based on building blocks identified in a computational screen. Both cages incorporate three azobenzene moieties, and are therefore capable of 3-fold isomerization, using either ditopic or tetratopic aldehydes containing diazene functionality. The ditopic aldehyde forms a Tri 2Di 3 cage via a 6-fold imine condensation and the tritopic aldehyde forms a Tet 3Di 6 cage via a 12-fold imine condensation. The relative energies and corresponding intrinsic cavities of each isomeric state were computed, and the photoswitching behavior of both cages was studied by UV-Vis and 1H NMR spectroscopy, including a detailed kinetic analysis of the thermal isomerization for each of the EEZ, EZZ and ZZZ metastable isomers of the Tet 3Di 6 cage. Both cages underwent photoisomerization, where a photostationary state of up to 77% of the cis-isomer and overall thermal half-life of 110 h was identified for the Tet 3Di 6 species. Overall, this work demonstrates the potential of computational modeling to inform the design of photoresponsive materials and highlights the contrasting effects on the photoswitching properties of the azobenzene moieties on incorporation into the different cage species.</p