407 research outputs found
Flexible fiber batteries for applications in smart textiles
Here we discuss two alternative approaches for building flexible batteries
for applications in smart textiles. The first approach uses well-studied
inorganic electrochemistry (Al-NaOCl galvanic cell) and innovative packaging in
order to produce batteries in a slender and flexible fiber form that can be
further weaved directly into the textiles. During fabrication process the
battery electrodes are co-drawn within a microstructured polymer fiber, which
is later filled with liquid electrolyte. The second approach describes Li-ion
chemistry within solid polymer electrolytes that are used to build a fully
solid and soft rechargeable battery that can be furthermore stitched onto a
textile, or integrated as stripes during weaving process
A modified Doyle-Fuller-Newman model enables the macroscale physical simulation of dual-ion batteries
Dual-ion batteries are being considered a feasible approach for electrochemical energy storage. In this battery technology both cations and anions are involved in the redox reactions, respectively, at the anode and the cathode. However, the participation of both ions in the redox reactions means that enough salt must be added in the electrolyte to ensure proper battery functioning, which present a limiting factor in battery design. Herein, a modified version of the standard pseudo-2D Doyle-Fuller-Newman model is proposed to account for the different redox reactions that occur in dual-ion batteries and simulate the variation of average salt concentration in the electrolyte during charging and discharging. The model has been validated against galvanostatic cycling and electrochemical impedance spectroscopy experimental data from dual-ion batteries based on poly(2,2,6,6-tetramethyl-1-piperidinyloxy methacrylate) (PTMA). Such a model can be helpful to design practical dual-ion batteries that respect the constraints imposed by their working mechanism and maximize the obtainable capacity and energy density
Practical Cell Design for PTMA-Based Organic Batteries: an Experimental and Modeling Study
Poly(2,2,6,6-tetramethyl-1-piperidinyloxy methacrylate) (PTMA) is one of the most promising organic cathode materials thanks to its relatively high redox potential, good rate performance, and cycling stability. However, being a p-type material, PTMA-based batteries pose additional challenges compared to conventional lithium-ion systems due to the involvement of anions in the redox process. This study presents a comprehensive approach to optimize such batteries, addressing challenges in electrode design, scalability, and cost. Experimental results at a laboratory scale demonstrate high active mass loadings of PTMA electrodes (up to 9.65 mg cm), achieving theoretical areal capacities that exceed 1 mAh cm. Detailed physics-based simulations and cost and performance analysis clarify the critical role of the electrolyte and the impact of the anion amount in the PTMA redox process, highlighting the benefits and the drawbacks of using highly concentrated electrolytes. The cost and energy density of lithium metal batteries with such high mass loading PTMA cathodes were simulated, finding that their performance is inferior to batteries based on inorganic cathodes even in the most optimistic conditions. In general, this work emphasizes the importance of considering a broader perspective beyond the lab scale and highlights the challenges in upscaling to realistic battery configurations
Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries
A tri-dimensional interweaving kinked silicon nanowires (k-SiNWs) assembly, with a Ni current collector co-integrated, is evaluated as electrode configuration for lithium ion batteries. The large-scale fabrication of k-SiNWs is based on a procedure for continuous metal assisted chemical etching of Si, supported by a chemical peeling step that enables the reuse of the Si substrate. The kinks are triggered by a simple, repetitive etch-quench sequence in a HF and H2O2-based etchant. We find that the inter-locking frameworks of k-SiNWs and multi-walled carbon nanotubes exhibit beneficial mechanical properties with a foam-like behavior amplified by the kinks and a suitable porosity for a minimal electrode deformation upon Li insertion. In addition, ionic liquid electrolyte systems associated with the integrated Ni current collector repress the detrimental effects related to the Si-Li alloying reaction, enabling high cycling stability with 80% capacity retention (1695 mAh/gSi) after 100 cycles. Areal capacities of 2.42 mAh/cm2 (1276 mAh/gelectrode) can be achieved at the maximum evaluated thickness (corresponding to 1.3 mgSi/cm2). This work emphasizes the versatility of the metal assisted chemical etching for the synthesis of advanced Si nanostructures for high performance lithium ion battery electrodes
Boron nitride-doped polyphenylenic organogels
Herein, we describe the synthesis of the first boron nitride-doped polyphenylenic material obtained through a [4 + 2] cycloaddition reaction between a triethynyl borazine unit and a biscyclopentadienone derivative, which undergoes organogel formation in chlorinated solvents (the critical jellification concentration is 4% w/w in CHCl3). The polymer has been characterized extensively by Fourier-transform infrared spectroscopy, solid-state 13C NMR, solid-state 11B NMR, and by comparison with the isolated monomeric unit. Furthermore, the polymer gels formed in chlorinated solvents have been thoroughly characterized and studied, showing rheological properties comparable to those of polyacrylamide gels with a low crosslinker percentage. Given the thermal and chemical stability, the material was studied as a potential support for solid-state electrolytes. showing properties comparable to those of polyethylene glycol-based electrolytes, thus presenting great potential for the application of this new class of material in lithium-ion batteries
Kinked silicon nanowires: Superstructures by metal assisted chemical etching
We report on metal assisted chemical etching of Si for the synthesis of mechanically-stable, hybrid crystallographic orientation Si superstructures with high aspect ratio, above 200. This one-pot-type method sustains high etching rates and facilitates reproducible results. The protocol enables the control of the number, angle and location of kinks via successive etch-quench sequences. We analysed relevant Au mask catalyst features to systematically assess their impact on a wide spectrum of etched morphologies that can be easily attained and customized by fine tuning of the critical etching parameters. For instance, the designed kinked Si nanowires can be internalized in biological cells, without affecting their viability. An accessible numerical model is provided to explain the etch profiles and the physico-chemical events at the Si-Au-electrolyte interface and offers guidelines for the development of finite-element modeling of metal assisted Si chemical etching
- …