11 research outputs found
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
First measurement of target and double spin asymmetries for polarized e- polarized p --> e p pi0 in the nucleon resonance region above the Delta(1232)
The exclusive channel polarized proton(polarized e,e prime p)pi0 was studied
in the first and second nucleon resonance regions in the Q2 range from 0.187 to
0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer
(CLAS). Longitudinal target and beam-target asymmetries were extracted over a
large range of center-of-mass angles of the pi0 and compared to the unitary
isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model
DMT. A strong sensitivity to individual models was observed, in particular for
the target asymmetry and in the higher invariant mass region. This data set,
once included in the global fits of the above models, is expected to place
strong constraints on the electrocoupling amplitudes A_{1/2} and S_{1/2} for
the Roper resonance N(1400)P11, and the N(1535)S11 and N(1520)D13 states.Comment: 13 pages, 13 figure
Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring
The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project) completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC) was the general contractor for the drilling operations throughout 2005
Clinical outcome of patients with malignant ventricular tachyarrhythmias and a multiprogrammable implantable cardioverter-defibrillator implanted with or without thoracotomy: an international multicenter study
Objectives. The long term efficacy and safety of a third-generation implantable cardioverter-defibrillator implanted with thoracotomy and nonthoracotomy lead systems was evaluated in a multicenter international study.
Background. The clinical impact of transvenous leads for nonthoracotomy implantation and pacing for bradyarrhythmias and tachyarrhythmias in implantable cardioverter defibrillator systems is not well defined.
Methods. The safety of the implantation procedure and clinical outcome of 1,221 patients with symptomatic and life-threatening ventricular tachyarrhythmias who underwent implantation of a third generation cardioverter defibrillator using either a thoracotomy approach with epicardial leads (616 patients) or a nonthoracotomy approach with endocardial leads (605 patients) in a nonrandomized manner was analyzed. The implantable cardioverter defibrillator system permitted pacing, cardioversion, defibrillation, arrhythmia event memory and noninvasive tachycardia induction.
Results. Successful implantation of an endocardial lead system was achieved in 605 (88.2%) of 686 patients and an epicardial system in 614 (99.7%) of 616 (p 0.2).
Conclusions. Third-generation cardioverter defibrillators with monophasic waveforms can be successfully implanted with epicardial (99.7%) and endocardial (88.2%) lead systems. We conclude that endocardial leads should be the implant technique of first choice. Improved patient management and tolerance for device therapy is achieved with the addition of antitachycardia pacemaker capability in these systems
Recommended from our members
First measurement of target and double spin asymmetries for ep -\u3e ep pi(0) in the nucleon resonance region above the Delta(1232)
The exclusive channel p⃗(e⃗,e\u27p)π0 was studied in the first and second nucleon resonance regions in the Q2 range from 0.187 to 0.770 GeV2 at Jefferson Lab using the CEBAF Large Acceptance Spectrometer. Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the π0 and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A1/2 and S1/2 for the Roper resonance N(1400)P11 and the N(1535)S11 and N(1520)D13 states
Recommended from our members
Electroexcitation of the Roper resonance for 1.7 \u3c Q(2)\u3c 4.5 GeV2 in ep -\u3e en pi(+)
The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for 1.
Recommended from our members
Electroproduction of phi(1020) mesons at 1.4 \u3c= Q(2) \u3c= 3.8 GeV2 measured with the CLAS spectrometer
Electroproduction of exclusive ϕ vector mesons has been studied with the CLAS detector in the kinematic range 1.4⩽Q2⩽3.8 GeV2,0.0⩽t\u27⩽3.6 GeV2, and 2.0⩽W⩽3.0 GeV. The scaling exponent for the total cross section as 1/(Q2+Mϕ2)n was determined to be n=2.49±0.33. The slope of the four-momentum transfer t\u27 distribution is bϕ=0.98±0.17 GeV-2. Under the assumption of s-channel helicity conservation, we determine the ratio of longitudinal to transverse cross sections to be R=0.86±0.24. A two-gluon exchange model is able to reproduce the main features of the data
Recommended from our members
Precise Measurement of the Neutron Magnetic Form Factor G(M)(n) in the Few-GeV2 Region
The neutron elastic magnetic form factor GMn has been extracted from quasielastic electron scattering data on deuterium with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was achieved by employing a ratio technique in which many uncertainties cancel, and by a simultaneous in-situ calibration of the neutron detection efficiency, the largest correction to the data. Neutrons were detected using the CLAS electromagnetic calorimeters and the time-of-flight scintillators. Data were taken at two different electron beam energies, allowing up to four semi-independent measurements of GMn to be made at each value of Q2. The dipole parameterization is found to provide a good description of the data over the measured Q2 range