8,559 research outputs found

    Robustness of the avalanche dynamics in data packet transport on scale-free networks

    Full text link
    We study the avalanche dynamics in the data packet transport on scale-free networks through a simple model. In the model, each vertex is assigned a capacity proportional to the load with a proportionality constant 1+a1+a. When the system is perturbed by a single vertex removal, the load of each vertex is redistributed, followed by subsequent failures of overloaded vertices. The avalanche size depends on the parameter aa as well as which vertex triggers it. We find that there exists a critical value aca_c at which the avalanche size distribution follows a power law. The critical exponent associated with it appears to be robust as long as the degree exponent is between 2 and 3, and is close in value to that of the distribution of the diameter changes by single vertex removal.Comment: 5 pages, 7 figures, final version published in PR

    Sandpiles on multiplex networks

    Full text link
    We introduce the sandpile model on multiplex networks with more than one type of edge and investigate its scaling and dynamical behaviors. We find that the introduction of multiplexity does not alter the scaling behavior of avalanche dynamics; the system is critical with an asymptotic power-law avalanche size distribution with an exponent τ=3/2\tau = 3/2 on duplex random networks. The detailed cascade dynamics, however, is affected by the multiplex coupling. For example, higher-degree nodes such as hubs in scale-free networks fail more often in the multiplex dynamics than in the simplex network counterpart in which different types of edges are simply aggregated. Our results suggest that multiplex modeling would be necessary in order to gain a better understanding of cascading failure phenomena of real-world multiplex complex systems, such as the global economic crisis.Comment: 7 pages, 7 figure

    Skeleton and fractal scaling in complex networks

    Full text link
    We find that the fractal scaling in a class of scale-free networks originates from the underlying tree structure called skeleton, a special type of spanning tree based on the edge betweenness centrality. The fractal skeleton has the property of the critical branching tree. The original fractal networks are viewed as a fractal skeleton dressed with local shortcuts. An in-silico model with both the fractal scaling and the scale-invariance properties is also constructed. The framework of fractal networks is useful in understanding the utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR

    Complete trails of co-authorship network evolution

    Full text link
    The rise and fall of a research field is the cumulative outcome of its intrinsic scientific value and social coordination among scientists. The structure of the social component is quantifiable by the social network of researchers linked via co-authorship relations, which can be tracked through digital records. Here, we use such co-authorship data in theoretical physics and study their complete evolutionary trail since inception, with a particular emphasis on the early transient stages. We find that the co-authorship networks evolve through three common major processes in time: the nucleation of small isolated components, the formation of a tree-like giant component through cluster aggregation, and the entanglement of the network by large-scale loops. The giant component is constantly changing yet robust upon link degradations, forming the network's dynamic core. The observed patterns are successfully reproducible through a new network model

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Scale-free random branching tree in supercritical phase

    Full text link
    We study the size and the lifetime distributions of scale-free random branching tree in which kk branches are generated from a node at each time step with probability qkkγq_k\sim k^{-\gamma}. In particular, we focus on finite-size trees in a supercritical phase, where the mean branching number C=kkqkC=\sum_k k q_k is larger than 1. The tree-size distribution p(s)p(s) exhibits a crossover behavior when 2<γ<32 < \gamma < 3; A characteristic tree size scs_c exists such that for sscs \ll s_c, p(s)sγ/(γ1)p(s)\sim s^{-\gamma/(\gamma-1)} and for sscs \gg s_c, p(s)s3/2exp(s/sc)p(s)\sim s^{-3/2}\exp(-s/s_c), where scs_c scales as (C1)(γ1)/(γ2)\sim (C-1)^{-(\gamma-1)/(\gamma-2)}. For γ>3\gamma > 3, it follows the conventional mean-field solution, p(s)s3/2exp(s/sc)p(s)\sim s^{-3/2}\exp(-s/s_c) with sc(C1)2s_c\sim (C-1)^{-2}. The lifetime distribution is also derived. It behaves as (t)t(γ1)/(γ2)\ell(t)\sim t^{-(\gamma-1)/(\gamma-2)} for 2<γ<32 < \gamma < 3, and t2\sim t^{-2} for γ>3\gamma > 3 when branching step ttc(C1)1t \ll t_c \sim (C-1)^{-1}, and (t)exp(t/tc)\ell(t)\sim \exp(-t/t_c) for all γ>2\gamma > 2 when ttct \gg t_c. The analytic solutions are corroborated by numerical results.Comment: 6 pages, 6 figure

    Network of Econophysicists: a weighted network to investigate the development of Econophysics

    Full text link
    The development of Econophysics is studied from the perspective of scientific communication networks. Papers in Econophysics published from 1992 to 2003 are collected. Then a weighted and directed network of scientific communication, including collaboration, citation and personal discussion, is constructed. Its static geometrical properties, including degree distribution, weight distribution, weight per degree, and betweenness centrality, give a nice overall description of the research works. The way we introduced here to measure the weight of connections can be used as a general one to construct weighted network.Comment: 6 pages, 7 figure
    corecore