146 research outputs found

    Stability of shortest paths in complex networks with random edge weights

    Full text link
    We study shortest paths and spanning trees of complex networks with random edge weights. Edges which do not belong to the spanning tree are inactive in a transport process within the network. The introduction of quenched disorder modifies the spanning tree such that some edges are activated and the network diameter is increased. With analytic random-walk mappings and numerical analysis, we find that the spanning tree is unstable to the introduction of disorder and displays a phase-transition-like behavior at zero disorder strength ϵ=0\epsilon=0. In the infinite network-size limit (NN\to \infty), we obtain a continuous transition with the density of activated edges Φ\Phi growing like Φϵ1\Phi \sim \epsilon^1 and with the diameter-expansion coefficient Υ\Upsilon growing like Υϵ2\Upsilon\sim \epsilon^2 in the regular network, and first-order transitions with discontinuous jumps in Φ\Phi and Υ\Upsilon at ϵ=0\epsilon=0 for the small-world (SW) network and the Barab\'asi-Albert scale-free (SF) network. The asymptotic scaling behavior sets in when NNcN\gg N_c, where the crossover size scales as Ncϵ2N_c\sim \epsilon^{-2} for the regular network, Ncexp[αϵ2]N_c \sim \exp[\alpha \epsilon^{-2}] for the SW network, and Ncexp[αlnϵϵ2]N_c \sim \exp[\alpha |\ln \epsilon| \epsilon^{-2}] for the SF network. In a transient regime with NNcN\ll N_c, there is an infinite-order transition with ΦΥexp[α/(ϵ2lnN)]\Phi\sim \Upsilon \sim \exp[-\alpha / (\epsilon^2 \ln N)] for the SW network and exp[α/(ϵ2lnN/lnlnN)]\sim \exp[ -\alpha / (\epsilon^2 \ln N/\ln\ln N)] for the SF network. It shows that the transport pattern is practically most stable in the SF network.Comment: 9 pages, 7 figur

    Cascade-based attacks on complex networks

    Full text link
    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.Comment: 4 pages, 4 figures, Revte

    Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon?

    Full text link
    The small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance. We find, surprisingly, that many scale-free networks are more sensitive to attacks on short-range than on long-range links. This result, besides its importance concerning network efficiency and/or security, has the striking implication that the small-world property of scale-free networks is mainly due to short-range links.Comment: 4 pages, 4 figures, Revtex, published versio

    Effects of Pore Walls and Randomness on Phase Transitions in Porous Media

    Full text link
    We study spin models within the mean field approximation to elucidate the topology of the phase diagrams of systems modeling the liquid-vapor transition and the separation of He3^3--He4^4 mixtures in periodic porous media. These topologies are found to be identical to those of the corresponding random field and random anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of walls (periodic or otherwise) are a key factor determining the nature of the phase diagram in porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.

    Steady-State Dynamics of the Forest Fire Model on Complex Networks

    Full text link
    Many sociological networks, as well as biological and technological ones, can be represented in terms of complex networks with a heterogeneous connectivity pattern. Dynamical processes taking place on top of them can be very much influenced by this topological fact. In this paper we consider a paradigmatic model of non-equilibrium dynamics, namely the forest fire model, whose relevance lies in its capacity to represent several epidemic processes in a general parametrization. We study the behavior of this model in complex networks by developing the corresponding heterogeneous mean-field theory and solving it in its steady state. We provide exact and approximate expressions for homogeneous networks and several instances of heterogeneous networks. A comparison of our analytical results with extensive numerical simulations allows to draw the region of the parameter space in which heterogeneous mean-field theory provides an accurate description of the dynamics, and enlights the limits of validity of the mean-field theory in situations where dynamical correlations become important.Comment: 13 pages, 9 figure

    Class of correlated random networks with hidden variables

    Get PDF
    We study a class models of correlated random networks in which vertices are characterized by \textit{hidden variables} controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an \textit{a priori} specified correlation structure. We also present an extension of the class, to map non-equilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system

    Correlations in Scale-Free Networks: Tomography and Percolation

    Full text link
    We discuss three related models of scale-free networks with the same degree distribution but different correlation properties. Starting from the Barabasi-Albert construction based on growth and preferential attachment we discuss two other networks emerging when randomizing it with respect to links or nodes. We point out that the Barabasi-Albert model displays dissortative behavior with respect to the nodes' degrees, while the node-randomized network shows assortative mixing. These kinds of correlations are visualized by discussig the shell structure of the networks around their arbitrary node. In spite of different correlation behavior, all three constructions exhibit similar percolation properties.Comment: 6 pages, 2 figures; added reference

    Orbital-selective Mott transitions: Heavy fermions and beyond

    Full text link
    Quantum phase transitions in metals are often accompanied by violations of Fermi liquid behavior in the quantum critical regime. Particularly fascinating are transitions beyond the Landau-Ginzburg-Wilson concept of a local order parameter. The breakdown of the Kondo effect in heavy-fermion metals constitutes a prime example of such a transition. Here, the strongly correlated f electrons become localized and disappear from the Fermi surface, implying that the transition is equivalent to an orbital-selective Mott transition, as has been discussed for multi-band transition-metal oxides. In this article, available theoretical descriptions for orbital-selective Mott transitions will be reviewed, with an emphasis on conceptual aspects like the distinction between different low-temperature phases and the structure of the global phase diagram. Selected results for quantum critical properties will be listed as well. Finally, a brief overview is given on experiments which have been interpreted in terms of orbital-selective Mott physics.Comment: 29 pages, 4 figs, mini-review prepared for a special issue of JLT

    Topologies and Laplacian spectra of a deterministic uniform recursive tree

    Full text link
    The uniform recursive tree (URT) is one of the most important models and has been successfully applied to many fields. Here we study exactly the topological characteristics and spectral properties of the Laplacian matrix of a deterministic uniform recursive tree, which is a deterministic version of URT. Firstly, from the perspective of complex networks, we determine the main structural characteristics of the deterministic tree. The obtained vigorous results show that the network has an exponential degree distribution, small average path length, power-law distribution of node betweenness, and positive degree-degree correlations. Then we determine the complete Laplacian spectra (eigenvalues) and their corresponding eigenvectors of the considered graph. Interestingly, all the Laplacian eigenvalues are distinct.Comment: 7 pages, 1 figures, definitive version accepted for publication in EPJ
    corecore