10,377 research outputs found

    Evolution of the Protein Interaction Network of Budding Yeast: Role of the Protein Family Compatibility Constraint

    Full text link
    Understanding of how protein interaction networks (PIN) of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce a hybrid network model composed of the yeast PIN and the protein family interaction network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed ones: gene duplication, divergence, and mutation. We investigate diverse structural properties of our model with parameter values relevant to yeast, finding that the model successfully reproduces the empirical data.Comment: 5 pages, 5 figures, 1 table. Title changed. Final version published in JKP

    Betweenness centrality correlation in social networks

    Full text link
    Scale-free (SF) networks exhibiting a power-law degree distribution can be grouped into the assortative, dissortative and neutral networks according to the behavior of the degree-degree correlation coefficient. Here we investigate the betweenness centrality (BC) correlation for each type of SF networks. While the BC-BC correlation coefficients behave similarly to the degree-degree correlation coefficients for the dissortative and neutral networks, the BC correlation is nontrivial for the assortative ones found mainly in social networks. The mean BC of neighbors of a vertex with BC gig_i is almost independent of gig_i, implying that each person is surrounded by almost the same influential environments of people no matter how influential the person is.Comment: 4 pages, 4 figures, 1 tabl

    Branching process approach for Boolean bipartite networks of metabolic reactions

    Full text link
    The branching process (BP) approach has been successful in explaining the avalanche dynamics in complex networks. However, its applications are mainly focused on unipartite networks, in which all nodes are of the same type. Here, motivated by a need to understand avalanche dynamics in metabolic networks, we extend the BP approach to a particular bipartite network composed of Boolean AND and OR logic gates. We reduce the bipartite network into a unipartite network by integrating out OR gates, and obtain the effective branching ratio for the remaining AND gates. Then the standard BP approach is applied to the reduced network, and the avalanche size distribution is obtained. We test the BP results with simulations on the model networks and two microbial metabolic networks, demonstrating the usefulness of the BP approach

    Coarsening Dynamics of Granular Heaplets in Tapped Granular Layers

    Full text link
    A semi-continuum model is introduced to study the dynamics of the formation of granular heaplets in tapped granular layers. By taking into account the energy dissipation of collisions and screening effects due to avalanches, this model is able to reproduce qualitatively the pattern of these heaplets. Our simulations show that the granular heaplets are characterised by an effective surface tension which depends on the magnitude of the tapping intensity. Also, we observe that there is a coarsening effect in that the average size of the heaplets, V grows as the number of taps k increases. The growth law at intermediate times can be fitted by a scaling function V ~ k^z but the range of validity of the power law is limited by size effects. The growth exponent z appears to diverge as the tapping intensity is increased.Comment: 4 pages, 4 figure
    • …
    corecore