9 research outputs found

    Scalability of Incompressible Flow Computations on Multi-GPU Clusters Using Dual-Level and Tri-Level Parallelism

    Get PDF
    High performance computing using graphics processing units (GPUs) is gaining popularity in the scientific computing field, with many large compute clusters being augmented with multiple GPUs in each node. We investigate hybrid tri-level (MPI-OpenMP-CUDA) parallel implementations to explore the efficiency and scalability of incompressible flow computations on GPU clusters up to 128 GPUS. This work details some of the unique issues faced when merging fine-grain parallelism on the GPU using CUDA with coarse-grain parallelism using OpenMP for intra-node and MPI for inter-node communication. Comparisons between the tri-level MPI-OpenMP-CUDA and dual-level MPI-CUDA implementations are shown using computationally large computational fluid dynamics (CFD) simulations. Our results demonstrate that a tri-level parallel implementation does not provide a significant advantage in performance over the dual-level implementation, however further research is needed to justify our conclusion for a cluster with a high GPU per node density or when using software that can utilize OpenMP’s fine-grain parallelism more effectively

    Programming Abstractions for Data Locality

    Get PDF
    The goal of the workshop and this report is to identify common themes and standardize concepts for locality-preserving abstractions for exascale programming models. Current software tools are built on the premise that computing is the most expensive component, we are rapidly moving to an era that computing is cheap and massively parallel while data movement dominates energy and performance costs. In order to respond to exascale systems (the next generation of high performance computing systems), the scientific computing community needs to refactor their applications to align with the emerging data-centric paradigm. Our applications must be evolved to express information about data locality. Unfortunately current programming environments offer few ways to do so. They ignore the incurred cost of communication and simply rely on the hardware cache coherency to virtualize data movement. With the increasing importance of task-level parallelism on future systems, task models have to support constructs that express data locality and affinity. At the system level, communication libraries implicitly assume all the processing elements are equidistant to each other. In order to take advantage of emerging technologies, application developers need a set of programming abstractions to describe data locality for the new computing ecosystem. The new programming paradigm should be more data centric and allow to describe how to decompose and how to layout data in the memory.Fortunately, there are many emerging concepts such as constructs for tiling, data layout, array views, task and thread affinity, and topology aware communication libraries for managing data locality. There is an opportunity to identify commonalities in strategy to enable us to combine the best of these concepts to develop a comprehensive approach to expressing and managing data locality on exascale programming systems. These programming model abstractions can expose crucial information about data locality to the compiler and runtime system to enable performance-portable code. The research question is to identify the right level of abstraction, which includes techniques that range from template libraries all the way to completely new languages to achieve this goal

    Initial genome sequencing of the sugarcane CP 96-1252 complex hybrid [version 1; referees: 2 approved]

    No full text
    The CP 96-1252 cultivar of sugarcane is a complex hybrid of commercial importance. DNA was extracted from lab-grown leaf tissue and sequenced. The raw Illumina DNA sequencing results provide 101 Gbp of genome sequence reads. The dataset is available from https://www.ncbi.nlm.nih.gov/bioproject/PRJNA345486/

    Towards EXtreme scale technologies and accelerators for euROhpc hw/Sw supercomputing applications for exascale: The TEXTAROSSA approach

    No full text
    In the near future, Exascale systems will need to bridge three technology gaps to achieve high performance while remaining under tight power constraints: energy efficiency and thermal control; extreme computation efficiency via HW acceleration and new arithmetic; methods and tools for seamless integration of reconfigurable accelerators in heterogeneous HPC multi-node platforms. TEXTAROSSA addresses these gaps through a co-design approach to heterogeneous HPC solutions, supported by the integration and extension of HW and SW IPs, programming models, and tools derived from European research
    corecore