86 research outputs found
Luttinger theorem for a spin-density-wave state
We obtained the analog of the Luttinger relation for a commensurate
spin-density-wave state. We show that while the relation between the area of
the occupied states and the density of particles gets modified in a simple and
predictable way when the system becomes ordered, a perturbative consideration
of the Luttinger theorem does not work due to the presence of an anomaly
similar to the chiral anomaly in quantum electrodynamics.Comment: 4 pages, RevTeX, 1 figure embedded in the text, ps-file is also
available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm
On the vertex corrections in antiferromagnetic spin fluctuation theories
We argue that recent calculations by Amin and Stamp (PRL 77, 301 (1996);
cond-mat/9601086) overestimate the strength of the vertex corrections in the
spin-fermion model for cuprates. We clarify the physical origin of the apparent
discrepancy between their results and earlier calculations. We also comment on
the relative sign of the vertex correction.Comment: 3 pages, Revtex, 1 figure, ps-file also available at
http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm
Quasiparticle dispersion of the t-J and Hubbard models
The spectral weight of the two dimensional and Hubbard models has been calculated using exact diagonalization and
quantum Monte Carlo techniques, at several densities . The photoemission region contains two
dominant distinct features, namely a low-energy quasiparticle peak with
bandwidth of order J, and a broad valence band peak at energies of order t.
This behavior away from half-filling, as long as the
antiferromagnetic (AF) correlations are robust. The results give support to
theories of the copper oxide materials based on the behavior of holes in
antiferromagnets, and it also provides theoretical guidance for the
interpretation of experimental photoemission data for the cuprates.Comment: (minor changes) RevTeX, 4 figures available on reques
Huge metastability in high-T_c superconductors induced by parallel magnetic field
We present a study of the temperature-magnetic field phase diagram of
homogeneous and inhomogeneous superconductivity in the case of a
quasi-two-dimensional superconductor with an extended saddle point in the
energy dispersion under a parallel magnetic field. At low temperature, a huge
metastability region appears, limited above by a steep superheating critical
field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We
show that the Pauli limit (H_p) for the upper critical magnetic field is
strongly enhanced due to the presence of the Van Hove singularity in the
density of states. The formation of a non-uniform superconducting state is
predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.
Single-Particle Pseudogap in Two-Dimensional Electron Systems
We investigate pseudogap phenomena in the 2D electron system.
Based on the mode-mode coupling theory of antiferromagnetic (AFM) and
-wave superconducting (SC) fluctuations, single-particle
dynamics is analyzed. For the parameter values of underdoped cuprates,
pseudogap structure grows in the single-particle spectral weight
around the wave vector and below the pseudo-spin-gap
temperature \TPG signaled by the reduction of dynamical spin correlations in
qualitative agreement with the experimental data. The calculated results for
the overdoped cuprates also reproduce the absence of the pseudogap in the
experiments. We also discuss limitations of our weak-coupling approach.Comment: 6 pages with 4 figures, submitted to J. Phys. Soc. Jp
Enhancement of Pairing Correlation and Spin Gap through Suppression of Single-Particle Dispersion in One-Dimensional Models
We investigate the effects of suppression of single-particle dispersion near
the Fermi level on the spin gap and the singlet-pairing correlation by using
the exact diagonalization method for finite-size systems. We consider strongly
correlated one-dimensional models, which have flat band dispersions near wave
number k=\pi/2, if the interactions are switched off. Our results for strongly
correlated models show that the spin gap region expands as the single-particle
dispersion becomes flatter. The region where the singlet-pairing correlation is
the most dominant also expands in models with flatter band dispersions. Based
on our numerical results, we propose a pairing mechanism induced by the
flat-band dispersion.Comment: 5 pages, including 5 eps figures, to appear in J.Phys.Soc.Jpn Vol.69
No.
Theory for the excitation spectrum of High-T$_c superconductors : quasiparticle dispersion and shadows of the Fermi surface
Using a new method for the solution of the FLEX-equations, which allows the
determination of the self energy of the Hubbard
model on the real frequency axis, we calculate the doping dependence of the
quasi-particle excitations of High-T superconductors. We obtain new results
for the shadows of the Fermi surface, their dependence on the deformation of
the quasi particle dispersion, an anomalous -dependence of and a related violation of the Luttinger theorem.
This sheds new light on the influence of short range magnetic order on the low
energy excitations and its significance for photoemission experiments.Comment: 4 pages (REVTeX) with 3 figure
Neutron scattering and superconducting order parameter in YBa2Cu3O7
We discuss the origin of the neutron scattering peak at 41 meV observed in
YBaCuO below . The peak may occur due to spin-flip electron
excitations across the superconducting gap which are enhanced by the
antiferromagnetic interaction between Cu spins. In this picture, the experiment
is most naturally explained if the superconducting order parameter has -wave
symmetry and opposite signs in the bonding and antibonding electron bands
formed within a CuO bilayer.Comment: In this version, only few minor corrections and the update of
references were done in order to make perfect correspondence with the
published version. RevTeX, psfig, 5 pages, and 3 figure
Superconductivity from Flat Dispersion Designed in Doped Mott Insulators
Routes to enhance superconducting instability are explored for doped Mott
insulators. With the help of insights for criticalities of metal-insulator
transitions, geometrical design of lattice structure is proposed to control the
instability. A guideline is to explicitly make flat band dispersions near the
Fermi level without suppressing two-particle channels. In a one-dimensional
model, numerical studies show that our prescription with finite-ranged hoppings
realizes large enhancement of spin-gap and pairing dominant regions. We also
propose several multi-band systems, where the pairing is driven by intersite
Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let
Dispersion of a single hole in the t-J model
The dispersion of a single hole in the t-J model obtained by the exact result
of 32 sites and the results obtained by self-consistent Born approximation and
the Green function Monte Carlo method can be simply derived by a mean-field
theory with d-RVB and antiferromagnetic order parameters. In addition, it
offers a simple explanation for the difference observed between those results.
The presence of the extended van Hove region at (pi,0) is a consequence of the
d-RVB pairing independenct of the antiferromagnetic order. Results including t'
and t" are also presented and explained consistently in a similar way.Comment: LaTex file, 5 pages with 5 embedded eps figure
- …