86 research outputs found

    Luttinger theorem for a spin-density-wave state

    Full text link
    We obtained the analog of the Luttinger relation for a commensurate spin-density-wave state. We show that while the relation between the area of the occupied states and the density of particles gets modified in a simple and predictable way when the system becomes ordered, a perturbative consideration of the Luttinger theorem does not work due to the presence of an anomaly similar to the chiral anomaly in quantum electrodynamics.Comment: 4 pages, RevTeX, 1 figure embedded in the text, ps-file is also available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm

    On the vertex corrections in antiferromagnetic spin fluctuation theories

    Full text link
    We argue that recent calculations by Amin and Stamp (PRL 77, 301 (1996); cond-mat/9601086) overestimate the strength of the vertex corrections in the spin-fermion model for cuprates. We clarify the physical origin of the apparent discrepancy between their results and earlier calculations. We also comment on the relative sign of the vertex correction.Comment: 3 pages, Revtex, 1 figure, ps-file also available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm

    Quasiparticle dispersion of the t-J and Hubbard models

    Full text link
    The spectral weight A(p,ω){\rm A({\bf p},\omega)} of the two dimensional t−J{\rm t-J} and Hubbard models has been calculated using exact diagonalization and quantum Monte Carlo techniques, at several densities 1.0≤⟨n⟩≤0.5{\rm 1.0 \leq \langle n \rangle \leq 0.5}. The photoemission (ω<0)(\omega < 0) region contains two dominant distinct features, namely a low-energy quasiparticle peak with bandwidth of order J, and a broad valence band peak at energies of order t. This behavior persistspersists away from half-filling, as long as the antiferromagnetic (AF) correlations are robust. The results give support to theories of the copper oxide materials based on the behavior of holes in antiferromagnets, and it also provides theoretical guidance for the interpretation of experimental photoemission data for the cuprates.Comment: (minor changes) RevTeX, 4 figures available on reques

    Huge metastability in high-T_c superconductors induced by parallel magnetic field

    Full text link
    We present a study of the temperature-magnetic field phase diagram of homogeneous and inhomogeneous superconductivity in the case of a quasi-two-dimensional superconductor with an extended saddle point in the energy dispersion under a parallel magnetic field. At low temperature, a huge metastability region appears, limited above by a steep superheating critical field (H_sh) and below by a strongly reentrant supercooling field (H_sc). We show that the Pauli limit (H_p) for the upper critical magnetic field is strongly enhanced due to the presence of the Van Hove singularity in the density of states. The formation of a non-uniform superconducting state is predicted to be very unlikely.Comment: 5 pages, 2 figures; to appear in Phys. Rev.

    Single-Particle Pseudogap in Two-Dimensional Electron Systems

    Full text link
    We investigate pseudogap phenomena in the 2D electron system. Based on the mode-mode coupling theory of antiferromagnetic (AFM) and dx2−y2d_{x^2-y^2}-wave superconducting (ddSC) fluctuations, single-particle dynamics is analyzed. For the parameter values of underdoped cuprates, pseudogap structure grows in the single-particle spectral weight A(k,ω)A(k,\omega) around the wave vector (π,0)(\pi,0) and (0,π)(0,\pi) below the pseudo-spin-gap temperature \TPG signaled by the reduction of dynamical spin correlations in qualitative agreement with the experimental data. The calculated results for the overdoped cuprates also reproduce the absence of the pseudogap in the experiments. We also discuss limitations of our weak-coupling approach.Comment: 6 pages with 4 figures, submitted to J. Phys. Soc. Jp

    Enhancement of Pairing Correlation and Spin Gap through Suppression of Single-Particle Dispersion in One-Dimensional Models

    Full text link
    We investigate the effects of suppression of single-particle dispersion near the Fermi level on the spin gap and the singlet-pairing correlation by using the exact diagonalization method for finite-size systems. We consider strongly correlated one-dimensional models, which have flat band dispersions near wave number k=\pi/2, if the interactions are switched off. Our results for strongly correlated models show that the spin gap region expands as the single-particle dispersion becomes flatter. The region where the singlet-pairing correlation is the most dominant also expands in models with flatter band dispersions. Based on our numerical results, we propose a pairing mechanism induced by the flat-band dispersion.Comment: 5 pages, including 5 eps figures, to appear in J.Phys.Soc.Jpn Vol.69 No.

    Theory for the excitation spectrum of High-T$_c superconductors : quasiparticle dispersion and shadows of the Fermi surface

    Full text link
    Using a new method for the solution of the FLEX-equations, which allows the determination of the self energy Σk(ω)\Sigma_{\bf k}(\omega) of the 2D2D Hubbard model on the real frequency axis, we calculate the doping dependence of the quasi-particle excitations of High-Tc_c superconductors. We obtain new results for the shadows of the Fermi surface, their dependence on the deformation of the quasi particle dispersion, an anomalous ω\omega-dependence of ImΣk(ω){\rm Im}\Sigma_{\bf k}(\omega) and a related violation of the Luttinger theorem. This sheds new light on the influence of short range magnetic order on the low energy excitations and its significance for photoemission experiments.Comment: 4 pages (REVTeX) with 3 figure

    Neutron scattering and superconducting order parameter in YBa2Cu3O7

    Full text link
    We discuss the origin of the neutron scattering peak at 41 meV observed in YBa2_2Cu3_3O7_7 below TcT_c. The peak may occur due to spin-flip electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. In this picture, the experiment is most naturally explained if the superconducting order parameter has ss-wave symmetry and opposite signs in the bonding and antibonding electron bands formed within a Cu2_2O4_4 bilayer.Comment: In this version, only few minor corrections and the update of references were done in order to make perfect correspondence with the published version. RevTeX, psfig, 5 pages, and 3 figure

    Superconductivity from Flat Dispersion Designed in Doped Mott Insulators

    Full text link
    Routes to enhance superconducting instability are explored for doped Mott insulators. With the help of insights for criticalities of metal-insulator transitions, geometrical design of lattice structure is proposed to control the instability. A guideline is to explicitly make flat band dispersions near the Fermi level without suppressing two-particle channels. In a one-dimensional model, numerical studies show that our prescription with finite-ranged hoppings realizes large enhancement of spin-gap and pairing dominant regions. We also propose several multi-band systems, where the pairing is driven by intersite Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let

    Spectral weight function for the half-filled Hubbard model: a singular value decomposition approach

    Get PDF
    The singular value decomposition technique is used to reconstruct the electronic spectral weight function for a half-filled Hubbard model with on-site repulsion U=4tU=4t from Quantum Monte Carlo data. A two-band structure for the single-particle excitation spectrum is found to persist as the lattice size exceeds the spin-spin correlation length. The observed bands are flat in the vicinity of the (0,Ï€),(Ï€,0)(0,\pi),(\pi,0) points in the Brillouin zone, in accordance with experimental data for high-temperature superconducting compounds.Comment: 4 pages, Revtex
    • …
    corecore