4,885 research outputs found

    Mars oxygen production system design

    Get PDF
    The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing

    Off-diagonal Interactions, Hund's Rules and Pair-binding in Hubbard Molecules

    Full text link
    We have studied the effect of including nearest-neighbor, electron-electron interactions, in particular the off-diagonal (non density-density) terms, on the spectra of truncated tetrahedral and icosahedral ``Hubbard molecules,'' focusing on the relevance of these systems to the physics of doped C60_{60}. Our perturbation theoretic and exact diagonalization results agree with previous work in that the density-density term suppresses pair-binding. However, we find that for the parameter values of interest for C60C_{60} the off-diagonal terms {\em enhance} pair-binding, though not enough to offset the suppression due to the density-density term. We also find that the critical interaction strengths for the Hund's rules violating level crossings in C60−2_{60}^{-2}, C60−3_{60}^{-3} and C60−4_{60}^{-4} are quite insensitive to the inclusion of these additional interactions.Comment: 20p + 5figs, Revtex 3.0, UIUC preprint P-94-10-08

    Diffusive counter dispersion of mass in bubbly media

    Full text link
    We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles are immovably trapped in a porous matrix by surface-tension forces, the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. Essentially, the gas solution is in local thermodynamic equilibrium with vapor phase all over the system, i.e., the solute concentration equals the solubility. When temperature and/or pressure gradients are applied, diffusion fluxes appear and these fluxes are faithfully determined by the temperature and pressure fields, not by the local solute concentration, which is enslaved by the former. We derive the equations governing such systems, accounting for thermodiffusion and gravitational segregation effects which are shown not to be neglected for geological systems---marine sediments, terrestrial aquifers, etc. The results are applied for the treatment of non-high-pressure systems and real geological systems bearing methane or carbon dioxide, where we find a potential possibility of the formation of gaseous horizons deep below a porous medium surface. The reported effects are of particular importance for natural methane hydrate deposits and the problem of burial of industrial production of carbon dioxide in deep aquifers.Comment: 10 pages, 5 figures, 1 table, Physical Review

    A slow coronal mass ejection with rising X-ray source

    Get PDF
    An eruptive event, which occurred on 16th April 2002, is discussed. Using images from the Transition Region and Coronal Explorer (TRACE) at 195 Å, we observe a lifting flux rope which gives rise to a slow coronal mass ejection (CME). There are supporting velocity observations from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO), which illustrate the helical nature of the structure. Additionally a rising coronal hard X-ray source, which is observed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), is shown to follow the flux rope with a speed of ~60 km s-1. It is also sampled by the CDS slit, although it has no signature in the Fe XIX band. Following the passage of this source, there is evidence from the CDS for down-flowing (cooling) material along newly reconnected loops through Doppler velocity observations, combined with magnetic field modeling. Later, a slow CME is observed with the Large Angle and Spectroscopic Coronagraph (LASCO). We combine a height-time profile of the flux rope at lower altitudes with the slow CME. The rising flux rope speeds up by a factor of 1.7 at the start of the impulsive energy release and goes through further acceleration before reaching 1.5 solar radii. These observations support classical CME scenarios in which the eruption of a filament precedes flaring activity. Cusped flare loops are observed following the erupting flux rope and their altitude increases with time. In addition we find RHESSI sources both below and above the probable location of the reconnection region.Fil: Goff, C. P.. Mullard Space Science Laboratory; Reino UnidoFil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Harra, L. K.. Mullard Space Science Laboratory; Reino UnidoFil: Matthews, S. A.. Mullard Space Science Laboratory; Reino UnidoFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Classical simulation of measurement-based quantum computation on higher-genus surface-code states

    Full text link
    We consider the efficiency of classically simulating measurement-based quantum computation on surface-code states. We devise a method for calculating the elements of the probability distribution for the classical output of the quantum computation. The operational cost of this method is polynomial in the size of the surface-code state, but in the worst case scales as 22g2^{2g} in the genus gg of the surface embedding the code. However, there are states in the code space for which the simulation becomes efficient. In general, the simulation cost is exponential in the entanglement contained in a certain effective state, capturing the encoded state, the encoding and the local post-measurement states. The same efficiencies hold, with additional assumptions on the temporal order of measurements and on the tessellations of the code surfaces, for the harder task of sampling from the distribution of the computational output.Comment: 21 pages, 13 figure
    • …
    corecore