4,885 research outputs found
Recommended from our members
Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein
We have introduced a substitution mutation into the c-abl locus of murine embryonic stem cells by homologous recombination between exogenously added DNA and the endogenous gene. Model constructs were initially generated that consisted of a promoterless selectable neomycin resistance marker inserted into the v-abl gene of the complete Abelson murine leukemia virus genome, designed to be expressed either as a fusion protein or by translational restart. Tests of these viral genomes for transmission of v-abl and neo markers showed more stable coexpression in a protein fusion construct. The neo fusion was subcloned from this v-abl construct into a promoterless c-abl fragment, and the resulting DNA was used to transform embryonic stem cells. Direct screening of genomic DNAs showed that a high proportion of drug-resistant clones arose from homologous recombination into the endogenous c-abl locus
Mars oxygen production system design
The design and construction phase is summarized of the Mars oxygen demonstration project. The basic hardware required to produce oxygen from simulated Mars atmosphere was assembled and tested. Some design problems still remain with the sample collection and storage system. In addition, design and development of computer compatible data acquisition and control instrumentation is ongoing
Off-diagonal Interactions, Hund's Rules and Pair-binding in Hubbard Molecules
We have studied the effect of including nearest-neighbor, electron-electron
interactions, in particular the off-diagonal (non density-density) terms, on
the spectra of truncated tetrahedral and icosahedral ``Hubbard molecules,''
focusing on the relevance of these systems to the physics of doped C.
Our perturbation theoretic and exact diagonalization results agree with
previous work in that the density-density term suppresses pair-binding.
However, we find that for the parameter values of interest for the
off-diagonal terms {\em enhance} pair-binding, though not enough to offset the
suppression due to the density-density term. We also find that the critical
interaction strengths for the Hund's rules violating level crossings in
C, C and C are quite insensitive to the
inclusion of these additional interactions.Comment: 20p + 5figs, Revtex 3.0, UIUC preprint P-94-10-08
Etude du paludisme à Edea et Mbebe : 1. Premiers résultats
International audienc
Diffusive counter dispersion of mass in bubbly media
We consider a liquid bearing gas bubbles in a porous medium. When gas bubbles
are immovably trapped in a porous matrix by surface-tension forces, the
dominant mechanism of transfer of gas mass becomes the diffusion of gas
molecules through the liquid. Essentially, the gas solution is in local
thermodynamic equilibrium with vapor phase all over the system, i.e., the
solute concentration equals the solubility. When temperature and/or pressure
gradients are applied, diffusion fluxes appear and these fluxes are faithfully
determined by the temperature and pressure fields, not by the local solute
concentration, which is enslaved by the former. We derive the equations
governing such systems, accounting for thermodiffusion and gravitational
segregation effects which are shown not to be neglected for geological
systems---marine sediments, terrestrial aquifers, etc. The results are applied
for the treatment of non-high-pressure systems and real geological systems
bearing methane or carbon dioxide, where we find a potential possibility of the
formation of gaseous horizons deep below a porous medium surface. The reported
effects are of particular importance for natural methane hydrate deposits and
the problem of burial of industrial production of carbon dioxide in deep
aquifers.Comment: 10 pages, 5 figures, 1 table, Physical Review
Recommended from our members
Fitness factors impacting survival of a subsurface bacterium in contaminated groundwater
Many factors contribute to the ability of a microbial species to persist when encountering complexly contaminated environments including time of exposure, the nature and concentration of contaminants, availability of nutritional resources, and possession of a combination of appropriate molecular mechanisms needed for survival. Herein we sought to identify genes that are most important for survival of Gram-negative Enterobacteriaceae in contaminated groundwater environments containing high concentrations of nitrate and metals using the metal-tolerant Oak Ridge Reservation (ORR) isolate, Pantoea sp. MT58 (MT58). Survival fitness experiments in which a randomly barcoded transposon insertion (RB-TnSeq) library of MT58 was exposed directly to contaminated ORR groundwater samples from across a nitrate and mixed metal contamination plume were used to identify genes important for survival with increasing exposure times and concentrations of contaminants, and availability of a carbon source. Genes involved in controlling and using carbon, encoding transcriptional regulators, and related to Gram-negative outer membrane processes were among those found to be important for survival in contaminated ORR groundwater. A comparative genomics analysis of 75 Pantoea genus strains allowed us to further separate the survival determinants into core and non-core genes in the Pantoea pangenome, revealing insights into the survival of subsurface microorganisms during contaminant plume intrusion
A slow coronal mass ejection with rising X-ray source
An eruptive event, which occurred on 16th April 2002, is discussed. Using images from the Transition Region and Coronal Explorer (TRACE) at 195 Ã…, we observe a lifting flux rope which gives rise to a slow coronal mass ejection (CME). There are supporting velocity observations from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO), which illustrate the helical nature of the structure. Additionally a rising coronal hard X-ray source, which is observed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), is shown to follow the flux rope with a speed of ~60 km s-1. It is also sampled by the CDS slit, although it has no signature in the Fe XIX band. Following the passage of this source, there is evidence from the CDS for down-flowing (cooling) material along newly reconnected loops through Doppler velocity observations, combined with magnetic field modeling. Later, a slow CME is observed with the Large Angle and Spectroscopic Coronagraph (LASCO). We combine a height-time profile of the flux rope at lower altitudes with the slow CME. The rising flux rope speeds up by a factor of 1.7 at the start of the impulsive energy release and goes through further acceleration before reaching 1.5 solar radii. These observations support classical CME scenarios in which the eruption of a filament precedes flaring activity. Cusped flare loops are observed following the erupting flux rope and their altitude increases with time. In addition we find RHESSI sources both below and above the probable location of the reconnection region.Fil: Goff, C. P.. Mullard Space Science Laboratory; Reino UnidoFil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Harra, L. K.. Mullard Space Science Laboratory; Reino UnidoFil: Matthews, S. A.. Mullard Space Science Laboratory; Reino UnidoFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes CientÃficas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de AstronomÃa y FÃsica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomÃa y FÃsica del Espacio; Argentin
Classical simulation of measurement-based quantum computation on higher-genus surface-code states
We consider the efficiency of classically simulating measurement-based
quantum computation on surface-code states. We devise a method for calculating
the elements of the probability distribution for the classical output of the
quantum computation. The operational cost of this method is polynomial in the
size of the surface-code state, but in the worst case scales as in the
genus of the surface embedding the code. However, there are states in the
code space for which the simulation becomes efficient. In general, the
simulation cost is exponential in the entanglement contained in a certain
effective state, capturing the encoded state, the encoding and the local
post-measurement states. The same efficiencies hold, with additional
assumptions on the temporal order of measurements and on the tessellations of
the code surfaces, for the harder task of sampling from the distribution of the
computational output.Comment: 21 pages, 13 figure
- …