11 research outputs found

    Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production

    Get PDF
    Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimise the productivity of these cultures it is important to monitor cellular metabolism, for example the utilisation of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalise on the wealth of genetic operons for metabolite sensing available in Nature for the development of other whole-cell biosensors

    CHO cell cultures in shake flasks and bioreactors present different host cell protein profiles in the supernatant

    Get PDF
    Several studies on the impact of cell culture parameters on the profile of host cell protein (HCP) impurities have been carried out in shake flasks. Herein, we explore how transferable the findings and conclusions of such investigations are to lab-scale bioreactors. Experiments were performed in both systems in fed-batch mode under physiological temperature and with a shift to mild hypothermia and the impact on key upstream performance indicators was quantified. Under both temperatures, bioreactors produced a richer HCP pool despite the overall concentration being similar at both scales and temperatures. The number of different HCPs detected in bioreactor supernatants was four times higher than that in flasks under physiological temperature and more than eight times higher under mild hypothermia. The origin of HCPs was also altered from mostly naturally secreted proteins in flasks to mainly intracellular proteins in bioreactors at the lower temperature. Although the number of species correlated with apoptotic cell density in bioreactors, this was not the case in flasks. Even though the level of HCP impurities and mAb/HCP concentration ratio were similar under all four conditions with an average of approximately 330 μg HCP/mL culture and 0.3 mg HCP/mg IgG4, respectively, the fact that culture method significantly affects the number of species present in the supernatant can have implications for downstream processing steps

    Host cell protein removal from biopharmaceutical preparations: toward the implementation of quality by design

    Get PDF
    Downstream processing of protein products of mammalian cell culture currently accounts for the largest fraction of the total production cost. A major challenge is the removal of host cell proteins, which are cell-derived impurities. Host cell proteins are potentially immunogenic and can compromise product integrity during processing and hold-up steps. There is an increasing body of evidence that the type of host cell proteins present in recombinant protein preparations is a function of cell culture conditions and handling of the harvest cell culture fluid. This, in turn, can affect the performance of downstream purification steps as certain species are difficult to remove and may require bespoke process solutions. Herein, we review recent research on the interplay between upstream process conditions, host cell protein composition and their downstream removal in antibody production processes, identifying opportunities for increasing process understanding and control. We further highlight advances in analytical and computational techniques that can enable the application of quality by design

    Cascading effect in bioprocessing – the impact of mild hypothermia on CHO cell behavior and host cell protein composition

    Get PDF
    A major challenge in downstream purification of monoclonal antibodies (mAb) is the removal of host cell proteins (HCPs). Previous studies have shown that cell culture decisions significantly impact the HCP content at harvest. However, it is currently unclear how process conditions affect physiological changes in the host cell population, and how these changes, in turn, cascade down to change the HCP profile. We examined how temperature downshift (TDS) to mild hypothermia affects key upstream performance indicators, i.e. antibody titre, HCP concentration and HCP species, across the cell culture decline phase and at harvest through the lens of changes in cellular behaviour. Mild hypothermic conditions introduced on day 5 of fed-batch Chinese hamster ovary (CHO) cell bioreactors resulted in a lower cell proliferation rate but larger percentages of healthier cells across the cell culture decline phase compared to bioreactors maintained at standard physiological temperature. Moreover, the onset of apoptosis was less evident in mild hypothermic cultures. Consequently, mild hypothermic cultures took an extra five days to reach an integral viable cell concentration (IVCC) and antibody yield similar to that of the control at standard physiological temperature. When cell viability dropped below 80%, mild hypothermic cell cultures had a reduced variety of HCP species by 36%, including approximately 44% and 27% lower proteases and chaperones, respectively, despite having similar HCP concentration. This study suggests that TDS may be a good strategy to provide cleaner downstream feedstocks by reducing the variety of HCPs and to maintain product integrity by reducing the number of proteases and chaperones

    Mild hypothermic culture conditions impact residual host cell protein composition post-protein a chromatography

    No full text
    Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry experiment with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples

    High pressure jet flame numerical analysis of CO emissions by means of the flamelet generated manifolds technique

    No full text
    In the present paper a computational analysis of a high pressure confined premixed turbulent methane/air jet flames is presented. In this scope, chemistry is reduced by the use of the Flamelet Generated Manifold method [1] and the fluid flow is modeled in an LES and RANS context. The reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the turbulence effect on the reaction is represented by the progress variable variance. The interaction between chemistry and turbulence is considered through a presumed probability density function (PDF) approach. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. Furthermore, the present analysis indicates that the physical and chemical processes controlling carbon monoxide (CO) emissions can be captured only by means of unsteady simulations
    corecore