43 research outputs found

    Cold Regime Interannual Variability of Primary and Secondary Producer Community Composition in the Southeastern Bering Sea

    Get PDF
    Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios

    Remotely Searching for Noctiluca Miliaris in the Arabian Sea

    Get PDF
    Reversing monsoonal winds in the Arabian Sea result in two seasons with elevated biological activity, namely the annual summer Southwest Monsoon (SWM; June to September) and winter Northeast Monsoon (NEM; November to March) [Wiggert et al., 2005]. Generally speaking, the SWM and NEM create two geographically distinct blooms [Banse and English, 2000; Levy et al., 2007]. In the summer, winds from the southwest drive offshore Ekman transport and coastal upwelling along the northwestern coast of Africa, which brings nutrient-rich water to the surface from below the permanent thermocline [Bauer et al., 1991]. In the winter, cooling of the northern Arabian Sea causes surface waters to sink, which generates convective mixing that injects nutrients throughout the upper mixed layer [Madhupratap et al., 1996]. This fertilization of otherwise nutrient-deplete surface waters produces one of the most substantial seasonal extremes of phytoplankton biomass and carbon flux anywhere in the world [Smith, 2005]

    Effect of freshwater influx on phytoplankton in the Mandovi estuary (Goa, India) during monsoon season: Chemotaxonomy

    Get PDF
    The Mandovi estuary is a prominent water body that runs along the west coast ofIndia. It forms an estuarine network with the adjacent Zuari estuary, connected via the Cumbharjua canal. The physico-chemical conditions seen in the Mandovi estuary are influenced by two factors: the fresh water runoff during the monsoon season (June-September) and the tidal influx of coastal seawater during the summer (October to May) season. However, the effects of monsoon related changes on the phytoplankton of the Mandovi estuary are not yet fully understood. An attempt to understand the same has been made here by applying the process of daily sampling at a fixed station throughout the monsoon season. It was noticed that the onset of the monsoon is responsible for an increase in nitrate levels upto 26 ΌM from <1 ΌM during pre-monsoon and enhancement of chlorophyll a (chl a) as high as 14 Όg·L-1 during the same period. The phytoplankton population was observed through both chemotaxonomy and microscopy and was found to be composed mainly of diatoms. CHEMTAX analysis further uncovers the presence of several other groups of phytoplankton, the presence of which is yet to be reported in many other tropical estuaries. It includes chrysophytes, cyanobacteria, prasinophytes, prymnesiophytes and chlorophytes. The appearance of phytoplankton groups at various stages of the monsoon was recorded, and this data is discussed in relation to environmental changes in the Mandovi estuary during the monsoon season

    Light absorption properties of southeastern Bering Sea waters: Analysis, parameterization and implications for remote sensing.

    Get PDF
    The absorption coefficients of phytoplankton (aPHY(λ)), non-algal particles (NAP) (aNAP(λ)) and colored dissolved organic matter (CDOM) (aCDOM(λ)) were investigated and parameterized in the southeastern Bering Sea during July 2008. The absorption coefficients were well structured with respect to hydrographic and biogeochemical characteristics of the shelf. The highest values of aPHY(443) were observed offshore and the lowest values of aPHY(443) were found in the coastal domain, a low productivity region associated with limited macronutrients. Values of aDG(λ) (aCDOM(λ) + aNAP(λ)) revealed an east–west gradient pattern with higher values in the coastal domain, and lower values in the outer domain. Lower chlorophyll specific aPHY(λ) (a*PHY(λ)) observed relative to middle and lower latitude waters indicated a change in pigment composition and/or package effect, which was consistent with phytoplankton community structure. aCDOM(λ) was the dominant light absorbing coefficient at all wavelengths examined except at 676 nm. Modeling of remote-sensing reflectance (Rrs(λ)) and the diffuse attenuation coefficient (Kd(λ)) from inherent optical properties revealed the strong influence of aCDOM(λ) on Rrs(λ) and Kd(λ). Good optical closure was achieved between modeled and radiometer measured Rrs(λ) and Kd(λ) with average percent difference of less than 25% and 19% respectively, except at red wavelengths. The aCDOM(λ) accounted for > 50% of Kd(λ) which was vertically variable. Chlorophyll-a calculated by the NASA standard chlorophyll-a algorithm (OC4.v6) was overestimated due to higher aCDOM(λ) and underestimated due to lower a*PHY(λ) at low and high concentrations of chlorophyll-a, respectively

    Locating Noctiluca Miliaris in the Arabian Sea: An Optical Proxy Approach

    Get PDF
    Coincident with shifting monsoon weather patterns over India, the phytoplankter Noctiluca miliaris has recently been observed to be dominating phytoplankton blooms in the northeastern Arabian Sea during the winter monsoons. Identifying the exact environmental and/or ecological conditions that favor this species has been hampered by the lack of concurrent environmental and biological observations on time and space scales relevant to ecologic and physiologic processes. We present a bio-optical proxy for N. miliaris measured on highly resolved depth scales coincident with hydrographic observations with the goal to identify conducive hydrographic conditions for the bloom. The proxy is derived from multichannel excitation chlorophyll a fluorescence and is validated with microscopy, pigment composition, and spectral absorption. Phytoplankton populations dominated by either diatoms or other dinoflagellates were additionally discerned. N. miliaris populations in full bloom were identified offshore in low-nutrient and low-N : P ratio surface waters within a narrow temperature and salinity range. These populations transitioned to high-biomass diatom-dominated coastal upwelling populations. A week later, the N. miliaris blooms were observed in declining phase, transitioning to very-low-biomass populations of non-N. miliaris dinoflagellates. There were no clear hydrographic conditions uniquely associated with the N. miliaris populations, although N. miliaris was not found in the upwelling or extremely oligotrophic waters. Taxonomic transitions were not discernible in the spatial structure of the bloom as identified by the ocean color Chl imagery, indicating that in situ observations may be necessary to resolve community structure, particularly for populations below the surface

    Influence of Light Availability and Prey Type on the Growth and Photo-Physiological Rates of the Mixotroph Noctiluca scintillans

    Get PDF
    A strain of the mixotrophic green Noctiluca scintillans (Noctiluca) isolated from the Arabian Sea afforded us an opportunity to investigate the photosynthetic and feeding characteristics of this organism which has recently replaced the once diatom dominated food chain of winter blooms in the Arabian Sea. Here we present the first in a series of experiments undertaken to study the interactive effects of irradiance and grazing response of this mixotroph to four phytoplankton species provided as food. Noctiluca showed a distinct preference for the dinoflagellate Peridinium foliaceum and the pennate diatom Phaeodactylum tricornutum, but not for the chlorophyte Pyramimonas sp., nor the chain forming diatom Thalassiosira weissflogii. However, irrespective of the food provided, adequate light was required for Noctiluca to grow as evidenced by its maximum growth rates of 0.3 day-1 when fed the preferred dinoflagellate Peridinium and exposed to optimal irradiance of 250 ÎŒE m-2 s-1 vs. growth rates of 0.13 day-1 with the same food but at a low irradiance of 10 ÎŒE m-2 s-1. Measurements of Noctiluca’s electron transport rates (ETR) per PSII Reaction Center as a function of irradiance also indicated severe light limitation of photosynthesis at 10 ÎŒE m-2 s-1. The active fluorescence derived ETR vs. Irradiance curves also revealed an interesting finding in that there was no significant difference in photosynthetic parameters such as the maximum photosynthetic capacity (ETRmax) nor α, the rate of increase of photosynthesis with light between fed and unfed cells under optimal light conditions. These results suggest that feeding does not enhance the photosynthetic activity of the endosymbionts when nutrients are not limiting as was the case in these experiments. Measurements of Noctiluca’s intracellular ammonium concentrations under optimal light conditions, the first for this strain, show significant accumulation of NH4+ (0.003–0.012 ÎŒM NH4+ cell-1) after 14 days for fed and unfed Noctiluca which was undetectable 4 days later. A similar 14-day increase but of significantly higher concentrations (0.005–0.08 ÎŒM NH4+ cell-1) was obtained under low light conditions. For P. tricornutum and T. weissflogii fed cultures under light limitation, NH4+ continued to increase past the 14-day period suggesting a strong and efficient mechanism for regulation of intracellular nutrients by Noctiluca

    MODIS-derived green Noctiluca blooms in the upper Gulf of Thailand: Algorithm development and seasonal variation mapping

    Get PDF
    In recent decades, red tides of non-toxic harmful algal blooms have frequently occurred in monsoon-influenced tropical areas, particularly the green form of Noctiluca scintillans (hereafter green Noctiluca). However, our understanding of the mechanism of red tide formation is hindered by spatial and temporal constraints of field data. In this study, we used moderate resolution imaging spectroradiometer (MODIS) ocean color data along with a locally developed algal-bloom classification algorithm to investigate the seasonal variability of dominant red tides across the upper Gulf of Thailand (uGoT). During our July 2018 observation, a super green Noctiluca bloom with extraordinarily high chl-a (&gt;1,469 mg m-3) displayed a distinct spectral reflectance characteristic among red tides in blue-to-green and red-to-near infrared wavelengths. According to the distinctive in situ hyperspectral characteristics of uGoT algal blooms, we developed a classification algorithm for MODIS normalized at 488, 531, and 667 nm, which successfully discriminated green Noctiluca in three levels of blooms, namely, super (100%), strong (&gt;80%), and weak (&gt;40%), from other algal blooms (i.e., dinoflagellates, diatoms, cyanobacteria, and mixed red tide species) as well as non-bloom oceanic and coastal waters using MODIS data, as confirmed by uGoT red tide reports. Monthly MODIS-based discrimination composites from 2003 to 2021 revealed seasonal variability in the surface distribution and bloom frequency of green Noctiluca and other red tides according to the Asian monsoon seasons: the southwest monsoon (May–September) and the northeast monsoon (October–January of the following year). Green Noctiluca blooms occurred farther from the shore and estuaries than other red tides (dinoflagellates and cyanobacteria), and were much more frequent than other red tides between the Tha Chin and Chao Phraya River mouths during the non-monsoon period (February to April). The frequency and distribution of green Noctiluca blooms, as well as other algal blooms, varied with the monsoon season. By comparing MODIS-derived algal blooms to monsoon-induced factors (i.e., sea surface winds, precipitation, and river discharge), we present an unprecedented overview of the spatial and temporal dynamics of red tides throughout the uGoT under Asian monsoon conditions. This research contributes to our understanding of the impact of climate change on phytoplankton dynamics
    corecore