101 research outputs found

    Local free-fall temperature of a RN-AdS black hole

    Full text link
    We use the global embedding Minkowski space (GEMS) geometries of a (3+1)-dimensional curved Reissner-Nordstr\"om(RN)-AdS black hole spacetime into a (5+2)-dimensional flat spacetime to define a proper local temperature, which remains finite at the event horizon, for freely falling observers outside a static black hole. Our extended results include the known limiting cases of the RN, Schwarzschild--AdS, and Schwarzschild black holes.Comment: 18 pages, 11 figures, version to appear in Int. J. Mod. Phys.

    A class of anisotropic (Finsler-) space-time geometries

    Get PDF
    A particular Finsler-metric proposed in [1,2] and describing a geometry with a preferred null direction is characterized here as belonging to a subclass contained in a larger class of Finsler-metrics with one or more preferred directions (null, space- or timelike). The metrics are classified according to their group of isometries. These turn out to be isomorphic to subgroups of the Poincar\'e (Lorentz-) group complemented by the generator of a dilatation. The arising Finsler geometries may be used for the construction of relativistic theories testing the isotropy of space. It is shown that the Finsler space with the only preferred null direction is the anisotropic space closest to isotropic Minkowski-space of the full class discussed.Comment: 12 pages, latex, no figure

    Poincar\'e gauge theory with even and odd parity dynamic connection modes: isotropic Bianchi cosmological models

    Full text link
    The Poincar\'e gauge theory of gravity has a metric compatible connection with independent dynamics that is reflected in the torsion and curvature. The theory allows two good propagating spin-0 modes. Dynamical investigations using a simple expanding cosmological model found that the oscillation of the 0+^+ mode could account for an accelerating expansion similar to that presently observed. The model has been extended to include a 00^{-} mode and more recently cross parity couplings. We investigate the dynamics of this model in a situation which is simple, non-trivial, and yet may give physically interesting results that might be observable. We consider homogeneous cosmologies, more specifically, isotropic Bianchi class A models. We find an effective Lagrangian for our dynamical system, a system of first order equations, and present some typical dynamical evolution.Comment: 8 pages, 1 figures, submitted to IARD 2010 Conference Proceedings in {\em Journal of Physics: Conference Series}, eds. L. Horwitz and M. Land (2011

    Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes: Matching between Hawking temperature and Unruh temperature

    Full text link
    We study the matching between the Hawking temperature of a large class of static D-dimensional black holes and the Unruh temperature of the corresponding higher dimensional Rindler spacetime. In order to accomplish this task we find the global embedding of the D-dimensional black holes into a higher dimensional Minkowskian spacetime, called the global embedding Minkowskian spacetime procedure (GEMS procedure). These global embedding transformations are important on their own, since they provide a powerful tool that simplifies the study of black hole physics by working instead, but equivalently, in an accelerated Rindler frame in a flat background geometry. We discuss neutral and charged Tangherlini black holes with and without cosmological constant, and in the negative cosmological constant case, we consider the three allowed topologies for the horizons (spherical, cylindrical/toroidal and hyperbolic).Comment: 7 pages; ReVTeX

    The Einstein static universe with torsion and the sign problem of the cosmological constant

    Full text link
    In the field equations of Einstein-Cartan theory with cosmological constant a static spherically symmetric perfect fluid with spin density satisfying the Weyssenhoff restriction is considered. This serves as a rough model of space filled with (fermionic) dark matter. From this the Einstein static universe with constant torsion is constructed, generalising the Einstein Cosmos to Einstein-Cartan theory. The interplay between torsion and the cosmological constant is discussed. A possible way out of the cosmological constant's sign problem is suggested.Comment: 8 pages, LaTeX; minor layout changes, typos corrected, one new equation, new reference [5], completed reference [13], two references adde

    Ideally embedded space-times

    Full text link
    Due to the growing interest in embeddings of space-time in higher-dimensional spaces we consider a specific type of embedding. After proving an inequality between intrinsically defined curvature invariants and the squared mean curvature, we extend the notion of ideal embeddings from Riemannian geometry to the indefinite case. Ideal embeddings are such that the embedded manifold receives the least amount of tension from the surrounding space. Then it is shown that the de Sitter spaces, a Robertson-Walker space-time and some anisotropic perfect fluid metrics can be ideally embedded in a five-dimensional pseudo-Euclidean space.Comment: layout changed and typos corrected; uses revtex

    Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    Full text link
    We show that the Einstein-aether theory of Jacobson and Mattingly (J&M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J&M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.Comment: Revtex4, 38 pages, 1 figur

    Torsion nonminimally coupled to the electromagnetic field and birefringence

    Full text link
    In conventional Maxwell--Lorentz electrodynamics, the propagation of light is influenced by the metric, not, however, by the possible presence of a torsion T. Still the light can feel torsion if the latter is coupled nonminimally to the electromagnetic field F by means of a supplementary Lagrangian of the type l^2 T^2 F^2 (l = coupling constant). Recently Preuss suggested a specific nonminimal term of this nature. We evaluate the spacetime relation of Preuss in the background of a general O(3)-symmetric torsion field and prove by specifying the optical metric of spacetime that this can yield birefringence in vacuum. Moreover, we show that the nonminimally coupled homogeneous and isotropic torsion field in a Friedmann cosmos affects the speed of light.Comment: Revtex, 12 pages, no figure

    Gravitation, electromagnetism and the cosmological constant in purely affine gravity

    Full text link
    The Eddington Lagrangian in the purely affine formulation of general relativity generates the Einstein equations with the cosmological constant. The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, which has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the Einstein-Maxwell Lagrangian in the metric formulation. We show that the sum of the two affine Lagrangians is dynamically inequivalent to the sum of the analogous Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid only for weak electromagnetic fields. Therefore the purely affine formulation that combines gravitation, electromagnetism and the cosmological constant cannot be a simple sum of terms corresponding to separate fields. Consequently, this formulation of electromagnetism seems to be unphysical, unlike the purely metric and metric-affine pictures, unless the electromagnetic field couples to the cosmological constant.Comment: 14 pages, extended and combined with gr-qc/0701176; published versio
    corecore