45 research outputs found

    Vibro-Tactile Enhancement of Speech Intelligibility in Multi-talker Noise for Simulated Cochlear Implant Listening.

    Get PDF
    Many cochlear implant (CI) users achieve excellent speech understanding in acoustically quiet conditions but most perform poorly in the presence of background noise. An important contributor to this poor speech-in-noise performance is the limited transmission of low-frequency sound information through CIs. Recent work has suggested that tactile presentation of this low-frequency sound information could be used to improve speech-in-noise performance for CI users. Building on this work, we investigated whether vibro-tactile stimulation can improve speech intelligibility in multi-talker noise. The signal used for tactile stimulation was derived from the speech-in-noise using a computationally inexpensive algorithm. Eight normal-hearing participants listened to CI simulated speech-in-noise both with and without concurrent tactile stimulation of their fingertip. Participants' speech recognition performance was assessed before and after a training regime, which took place over 3 consecutive days and totaled around 30 min of exposure to CI-simulated speech-in-noise with concurrent tactile stimulation. Tactile stimulation was found to improve the intelligibility of speech in multi-talker noise, and this improvement was found to increase in size after training. Presentation of such tactile stimulation could be achieved by a compact, portable device and offer an inexpensive and noninvasive means for improving speech-in-noise performance in CI users

    Electro-haptic enhancement of speech-in-noise performance in cochlear implant users

    Get PDF
    Abstract: Cochlear implant (CI) users receive only limited sound information through their implant, which means that they struggle to understand speech in noisy environments. Recent work has suggested that combining the electrical signal from the CI with a haptic signal that provides crucial missing sound information (“electro-haptic stimulation”; EHS) could improve speech-in-noise performance. The aim of the current study was to test whether EHS could enhance speech-in-noise performance in CI users using: (1) a tactile signal derived using an algorithm that could be applied in real time, (2) a stimulation site appropriate for a real-world application, and (3) a tactile signal that could readily be produced by a compact, portable device. We measured speech intelligibility in multi-talker noise with and without vibro-tactile stimulation of the wrist in CI users, before and after a short training regime. No effect of EHS was found before training, but after training EHS was found to improve the number of words correctly identified by an average of 8.3%-points, with some users improving by more than 20%-points. Our approach could offer an inexpensive and non-invasive means of improving speech-in-noise performance in CI users
    corecore