213 research outputs found

    Human Stem Cell-Derived Neurons: A System to Study Human Tau Function and Dysfunction

    Get PDF
    Background: Intracellular filamentous deposits containing microtubule-associated protein tau constitute a defining characteristic of many neurodegenerative disorders. Current experimental models to study tau pathology in vitro do not usually recapitulate the tau expression pattern characteristic of adult human brain. In this study, we have investigated whether human embryonic stem cell-derived neurons could be a good model to study human tau distribution, function and dysfunction. Methodology/Principal Findings: Using RT-PCR, immunohistochemistry, western blotting and cell transfections we have investigated whether all 6 adult human brain tau isoforms are expressed in neurons derived from human embryonic and fetal stem cells and whether 4 repeat tau over-expression alone, or with the F3 tau repeat fragment, (amino acid 258–380 of the 2N4R tau isoform with the DK280 mutation) affects tau distribution. We found that the shortest 3 repeat tau isoform, similarly to human brain, is the first to be expressed during neuronal differentiation while the other 5 tau isoforms are expressed later. Over expression of tau with 4 repeats affects tau cellular distribution and the short tau F3 fragment appears to increase tau phosphorylation but this effect does not appear to be toxic for the cell. Conclusions: Our results indicate that human embryonic stem cell-derived neurons express all 6 tau isoforms and are

    Three Repeat Isoforms of Tau Inhibit Assembly of Four Repeat Tau Filaments

    Get PDF
    Tauopathies are defined by assembly of the microtubule associated protein tau into filamentous tangles and classified by the predominant tau isoform within these aggregates. The major isoforms are determined by alternative mRNA splicing of exon 10 generating tau with three (3R) or four (4R) ∼32 amino acid imperfect repeats in the microtubule binding domain. In normal adult brains there is an approximately equimolar ratio of 3R and 4R tau which is altered by several disease-causing mutations in the tau gene. We hypothesized that when 4R and 3R tau isoforms are not at equimolar ratios aggregation is favored. Here we provide evidence for the first time that the combination of 3R and 4R tau isoforms results in less in vitro heparin induced polymerization than with 4R preparations alone. This effect was independent of reducing conditions and the presence of alternatively spliced exons 2 and 3 N-terminal inserts. The addition of even small amounts of 3R to 4R tau assembly reactions significantly decreased 4R assembly. Together these findings suggest that co-expression of 3R and 4R tau isoforms reduce tau filament assembly and that 3R tau isoforms inhibit 4R tau assembly. Expression of equimolar amounts of 3R and 4R tau in adult humans may be necessary to maintain proper neuronal microtubule dynamics and to prevent abnormal tau filament assembly. Importantly, these findings indicate that disruption of the normal equimolar 3R to 4R ratio may be sufficient to drive tau aggregation and that restoration of the tau isoform balance may have important therapeutic implications in tauopathies

    Pros and cons of a prion-like pathogenesis in Parkinson's disease

    Get PDF
    Background: Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder which affects widespread areas of the brainstem, basal ganglia and cerebral cortex. A number of proteins are known to accumulate in parkinsonian brains including ubiquitin and alpha-synuclein. Prion diseases are sporadic, genetic or infectious disorders with various clinical and histopathological features caused by prion proteins as infectious proteinaceous particles transmitting a misfolded protein configuration through brain tissue. The most important form is Creutzfeldt-Jakob disease which is associated with a self-propagating pathological precursor form of the prion protein that is physiologically widely distributed in the central nervous system. Discussion: It has recently been found that alpha-synuclein may behave similarly to the prion precursor and propagate between cells. The post-mortem proof of alpha-synuclein containing Lewy bodies in embryonic dopamine cells transplants in PD patient suggests that the misfolded protein might be transmitted from the diseased host to donor neurons reminiscent of prion behavior. The involvement of the basal ganglia and brainstem in the degenerative process are other congruencies between Parkinson's and Creutzfeldt-Jakob disease. However, a number of issues advise caution before categorizing Parkinson's disease as a prion disorder, because clinical appearance, brain imaging, cerebrospinal fluid and neuropathological findings exhibit fundamental differences between both disease entities. Most of all, infectiousness, a crucial hallmark of prion diseases, has never been observed in PD so far. Moreover, the cellular propagation of the prion protein has not been clearly defined and it is, therefore, difficult to assess the molecular similarities between the two disease entities. Summary: At the current state of knowledge, the molecular pathways of transmissible pathogenic proteins are not yet fully understood. Their exact involvement in the pathophysiology of prion disorders and neurodegenerative diseases has to be further investigated in order to elucidate a possible overlap between both disease categories that are currently regarded as distinct entities

    Propagation of Tau aggregates.

    Get PDF
    Since 2009, evidence has accumulated to suggest that Tau aggregates form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of Tau aggregates is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighbouring cells. In mice, the intracerebral injection of Tau inclusions induced the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Short fibrils constituted the major species of seed-competent Tau. The existence of several human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist

    The muscle protein dysferlin accumulates in the Alzheimer brain

    Get PDF
    Dysferlin is a transmembrane protein that is highly expressed in muscle. Dysferlin mutations cause limb-girdle dystrophy type 2B, Miyoshi myopathy and distal anterior compartment myopathy. Dysferlin has also been described in neural tissue. We studied dysferlin distribution in the brains of patients with Alzheimer disease (AD) and controls. Twelve brains, staged using the Clinical Dementia Rating were examined: 9 AD cases (mean age: 85.9 years and mean disease duration: 8.9 years), and 3 age-matched controls (mean age: 87.5 years). Dysferlin is a cytoplasmic protein in the pyramidal neurons of normal and AD brains. In addition, there were dysferlin-positive dystrophic neurites within Aβ plaques in the AD brain, distinct from tau-positive neurites. Western blots of total brain protein (RIPA) and sequential extraction buffers (high salt, high salt/Triton X-100, SDS and formic acid) of increasing protein extraction strength were performed to examine solubility state. In RIPA fractions, dysferlin was seen as 230–272 kDa bands in normal and AD brains. In serial extractions, there was a shift of dysferlin from soluble phase in high salt/Triton X-100 to the more insoluble SDS fraction in AD. Dysferlin is a new protein described in the AD brain that accumulates in association with neuritic plaques. In muscle, dysferlin plays a role in the repair of muscle membrane damage. The accumulation of dysferlin in the AD brain may be related to the inability of neurons to repair damage due to Aβ deposits accumulating in the AD brain

    Alternative splicing of exon 10 in the tau gene as a target for treatment of tauopathies

    Get PDF
    Tau aggregation is one of the major features in Alzheimer's disease and in several other tauopathies, including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), and progressive supranuclear palsy (PSP). More than 35 mutations in the tau gene have been identified from FTDP-17 patients. A group of these mutations alters splicing of exon 10, resulting in an increase in exon 10 inclusion into tau mRNA. Abnormal splicing with inclusion of exon 10 into tau mRNA has also been observed in PSP and AD patients. These results indicate that abnormal splicing of exon 10, leading to the production of tau with exon 10, is probably one of the mechanisms by which tau accumulates and aggregates in tauopathic brains. Therefore, modulation of exon 10 splicing in the tau gene could potentially be targeted to prevent tauopathies. To identify small molecules or compounds that could potentially be developed into drugs to treat tauopathies, we established a cell-based high-throughput screening assay. In this review, we will discuss how realistic, specific biological molecules can be found to regulate exon 10 splicing in the tau gene for potential treatment of tauopathies

    Mice with Mutation in Dynein Heavy Chain 1 Do Not Share the Same Tau Expression Pattern with Mice with SOD1-Related Motor Neuron Disease

    Get PDF
    Due to controversy about the involvement of Dync1h1 mutation in pathogenesis of motor neuron disease, we investigated expression of tau protein in transgenic hybrid mice with Dync1h1 (so-called Cra1/+), SOD1G93A (SOD1/+), double (Cra1/SOD1) mutations and wild-type controls. Total tau-mRNA and isoforms 0, 1 and 2 N expression was studied in frontal cortex, hippocampus, spinal cord and cerebellum of presymptomatic and symptomatic animals (age 70, 140 and 365 days). The most significant differences were found in brain cortex and cerebellum, but not in hippocampus and spinal cord. There were less changes in Cra1/SOD1 double heterozygotes compared to mice harboring single mutations. The differences in total tau expression and in profile of its isoforms between Cra1/+ and SOD1/+ transgenics indicate a distinct pathogenic entity of these two conditions
    corecore