1,647 research outputs found

    Comment on "A note on the construction of the Ermakov-Lewis invariant"

    Full text link
    We show that the basic results on the paper referred in the title [J. Phys. A: Math. Gen. v. 35 (2002) 5333-5345], concerning the derivation of the Ermakov invariant from Noether symmetry methods, are not new

    On the Hamiltonian structure of Ermakov systems

    Full text link
    A canonical Hamiltonian formalism is derived for a class of Ermakov systems specified by several different frequency functions. This class of systems comprises all known cases of Hamiltonian Ermakov systems and can always be reduced to quadratures. The Hamiltonian structure is explored to find exact solutions for the Calogero system and for a noncentral potential with dynamic symmetry. Some generalizations of these systems possessing exact solutions are also identified and solved

    Noether symmetries for two-dimensional charged particle motion

    Full text link
    We find the Noether point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries are composed of a quasi-invariance transformation, a time-dependent rotation and a time-dependent spatial translation. The associated electromagnetic field satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding three classes of electromagnetic fields compatible with Noether point symmetries. The corresponding Noether invariants are derived and interpreted

    Key BIM adoption drivers to improve performance of infrastructure projects in the Ethiopian construction sector: a structural equation modeling approach

    Get PDF
    The aim of this paper is to explore the critical BIM adoption drivers across the Ethiopian public infrastructure construction sector. In this regard, a comprehensive systematic literature review was employed to identify potential BIM implementation attributes in developing countries and validated through a pilot test. Then, quantitative data was collected from experts working in various organizations using a structured questionnaire survey. A structural equation model was then developed based on five key BIM adoption constructs and 14 adoption drivers. Based on the path analysis, Application, Environment, and Project related factors positively affect BIM adoption in infrastructure projects, whereas Organization and Information Management are insignificant and negatively affect BIM adoption in the Ethiopian construction industry. The study highlighted key BIM adoption attributes that are helpful to enhance the overall project management performance in infrastructure projects. The proposed action plan is beneficial to various professionals, government, and stakeholders in an effort to improve the current level of BIM uptake in the horn of Africa. More so, the findings of this paper can be used to facilitate and promote BIM adoption in public infrastructure construction projects across the Ethiopian construction marke

    Generalized Hamiltonian structures for Ermakov systems

    Full text link
    We construct Poisson structures for Ermakov systems, using the Ermakov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible

    Modified Zakharov equations for plasmas with a quantum correction

    Get PDF
    Quantum Zakharov equations are obtained to describe the nonlinear interaction between quantum Langmuir waves and quantum ion-acoustic waves. These quantum Zakharov equations are applied to two model cases, namely the four-wave interaction and the decay instability. In the case of the four-wave instability, sufficiently large quantum effects tend to suppress the instability. For the decay instability, the quantum Zakharov equations lead to results similar to those of the classical decay instability except for quantum correction terms in the dispersion relations. Some considerations regarding the nonlinear aspects of the quantum Zakharov equations are also offered.Comment: 4 figures. Accepted for publication in Physics of Plasmas (2004

    Amplitude and phase representation of quantum invariants for the time dependent harmonic oscillator

    Full text link
    The correspondence between classical and quantum invariants is established. The Ermakov Lewis quantum invariant of the time dependent harmonic oscillator is translated from the coordinate and momentum operators into amplitude and phase operators. In doing so, Turski's phase operator as well as Susskind-Glogower operators are generalized to the time dependent harmonic oscillator case. A quantum derivation of the Manley-Rowe relations is shown as an example

    Lie symmetries for two-dimensional charged particle motion

    Full text link
    We find the Lie point symmetries for non-relativistic two-dimensional charged particle motion. These symmetries comprise a quasi-invariance transformation, a time-dependent rotation, a time-dependent spatial translation and a dilation. The associated electromagnetic fields satisfy a system of first-order linear partial differential equations. This system is solved exactly, yielding four classes of electromagnetic fields compatible with Lie point symmetries
    corecore