180 research outputs found
The IκB Function of NF-κB2 p100 Controls Stimulated Osteoclastogenesis
The prototranscription factor p100 represents an intersection of the NF-κB and IκB families, potentially serving as both the precursor for the active NF-κB subunit p52 and as an IκB capable of retaining NF-κB in the cytoplasm. NF-κB–inducing kinase (NIK) controls processing of p100 to generate p52, and thus NIK-deficient mice can be used to examine the biological effects of a failure in such processing. We demonstrate that treatment of wild-type osteoclast precursors with the osteoclastogenic cytokine receptor activator of NF-κB ligand (RANKL) increases both expression of p100 and its conversion to p52, resulting in unchanged net levels of p100. In the absence of NIK, p100 expression is increased by RANKL, but its conversion to p52 is blocked, leading to cytosolic accumulation of p100, which, acting as an IκB protein, binds NF-κB complexes and prevents their nuclear translocation. High levels of unprocessed p100 in osteoclast precursors from NIK−/− mice or a nonprocessable form of the protein in wild-type cells impair RANKL-mediated osteoclastogenesis. Conversely, p100-deficient osteoclast precursors show enhanced sensitivity to RANKL. These data demonstrate a novel, biologically relevant means of regulating NF-κB signaling, with upstream control and kinetics distinct from the classical IκBα pathway
Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study
Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an increase in the frequency of transcriptional bursts
- …