4 research outputs found

    Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia-reperfusion injury through depletion of glutathione.

    Get PDF
    Zinc (Zn) plays an important role in maintaining the anti-oxidant status within the heart, and helps to counter the acute redox stress that occurs during myocardial ischaemia and reperfusion. Individuals with low zinc (Zn) levels are at greater risk of developing an acute myocardial infarction; however, the impact of this on the extent of myocardial injury is unknown. The present study aimed to compare the effects of dietary zinc depletion with in vitro removal of Zn (TPEN) on the outcome of acute myocardial infarction and vascular function. Male Sprague-Dawley rats were fed either a zinc adequate (ZA; 35mg Zn/kg diet) or zinc deficient (ZD; < 1mg Zn/kg diet) diet for two weeks prior to heart isolation. Perfused hearts were subjected to a thirty-minute ischaemia/two-hour reperfusion (I/R) protocol, during which time ventricular arrhythmias were recorded and after which infarct size was measured, along with markers of anti-oxidant status. In separate experiments hearts were challenged with the Zn chelator TPEN (10μM) prior to ischaemia onset. Both dietary and TPEN-induced Zn depletion significantly extended infarct size; dietary Zn depletion was associated with reduced total cardiac glutathione (GSH) levels, while TPEN decreased cardiac SOD-1 levels. TPEN, but not dietary Zn depletion also suppressed ventricular arrhythmias and depressed vascular responses to nitric oxide (NO). These findings demonstrate that both modes of zinc depletion worsen the outcome from I/R but through different mechanisms. Dietary Zn deficiency, resulting in reduced cardiac GSH, is the most appropriate model for determining the role of endogenous Zn in I/R injury

    Metabolic alterations in a rat model of Takotsubo syndrome

    Get PDF
    This work was supported by British Heart Foundation, Award FS/16/39/32174 [Early Metabolic Intervention in Acute Stress-Induced (Tako-tsubo) Cardiomyopathy] to D.K.D. D.K.D. is supported by the British Heart Foundation (FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, PG/17/64/33205), Chest Heart and Stroke Scotland (19/53), Tenovus Scotland (G.18.01), Friends of Anchor, and Grampian NHS-Endowments. C.M. is supported by the Deutsche Forschungsgemeinschaft (Ma 2528/7-1; SFB 894; TRR-219), the Federal Ministry of Education and Research (BMBF; 01EO1504), and the Barth syndrome foundation.Peer reviewedPublisher PD

    Metabolic alterations in a rat model of Takotsubo syndrome

    Get PDF
    AIMS: Cardiac energetic impairment is a major finding in takotsubo patients. We investigate specific metabolic adaptations to direct future therapies. METHODS AND RESULTS: An isoprenaline-injection female rat model (versus sham) was studied at day-3; recovery assessed at day-7. Substrate uptake, metabolism, inflammation and remodelling were investigated by 18F-FDG-PET, metabolomics, qPCR and WB. Isolated cardiomyocytes were patch-clamped during stress protocols for redox states of NAD(P)H/FAD or [Ca2+]c, [Ca2+]m and sarcomere length. Mitochondrial respiration was assessed by seahorse/Clark electrode (glycolytic and β-oxidation substrates).Cardiac 18F-FDG metabolic rate was increased in takotsubo (p = 0.006), as were expression of GLUT4-RNA/GLUT1/HK2-RNA and HK activity (all p  0.0001). Both lactate and pyruvate were lower (p < 0.05) despite increases in LDH-RNA and PDH (p < 0.05 both). β-oxidation enzymes CPT1b-RNA and 3KAT were increased (p < 0.01) but malonyl-CoA (CPT-1 regulator) was upregulated (p = 0.01) with decreased fatty acids and acyl-carnitines levels (p = 0.0001-0.02). Krebs cycle intermediates α-ketoglutarate and succinyl-carnitine were reduced (p < 0.05) as was cellular ATP reporter dihydroorotate (p = 0.003). Mitochondrial Ca2+ uptake during high workload was impaired on day-3 (p < 0.0001), inducing oxidation of NAD(P)H and FAD (p = 0.03) but resolved by day-7. There were no differences in mitochondrial respiratory function, sarcomere shortening or [Ca2+] transients of isolated cardiomyocytes, implying preserved integrity of both mitochondria and cardiomyocyte. Inflammation and remodelling were upregulated - increased CD68-RNA, collagen RNA/protein and skeletal actin RNA (all p < 0.05). CONCLUSION: Dys-regulation of glucose and lipid metabolic pathways with decreases in final glycolytic and β-oxidation metabolites and reduced availability of Krebs intermediates characterises takotsubo myocardium. The energetic deficit accompanies defective Ca2+ handling, inflammation and upregulation of remodelling pathways, with preservation of sarcomeric and mitochondrial integrity. TRANSLATIONAL PERSPECTIVE: The simultaneous dysregulation in the glycolytic and beta-oxidation pathways which underlies the energetic deficit of the takotsubo heart supports further testing of currently available metabolic modulators as possible candidates for successful therapy, as well as targeting the inflammatory and remodelling pathways
    corecore