2 research outputs found

    Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability

    Get PDF
    ABSTRACT Enzymatic conversion of hydrocodone to hydromorphone is catalyzed by cytochrome P450 2D6, which is inactive in about 7% of Caucasians [poor metabolizers (PMs)] and can be inhibited by quinidine pretreatment in the remainder [extensive metabolizers (EMs)]. If hydromorphone, having a substantially higher -receptor affinity than hydrocodone, contributes importantly to the physiological and subjective effects of oral hydrocodone, then PMs should be less responsive to the same doses, and quinidine pretreatment should cause EMs to temporarily respond as PMs. Seventeen EMs and 8 PMs who previously responded positively to hydromorphone s.c. received placebo and hydrocodone (10 mg, 15 mg and 22.5 mg p.o.) and were retested with their favorite dose after placebo or quinidine (100 mg) pretreatment; physiological and subjective measures were collected at base line and four times after drug administration, and urine was collected for 8 hr. EMs and PMs were equally responsive to oral hydrocodone, and quinidine had no consistent effect on their responses, even though quinidine abolished the pre-existing metabolic differences in hydromorphone production, as measured in urine. These data suggest only a small role of hydromorphone in eliciting abuserelated responses to oral hydrocodone. The genetic polymorphism of the drug-metabolizing enzyme CYP2D6 results in phenotypic differences in the pharmacokinetics of many drugs One drug for which there is evidence of phenotypic differences in response is codeine, which is O-demethylated by CYP2D6 to form morphine Hydrocodone differs structurally from codeine in that the C6-position is occupied by a keto-group, and thus the drug does not undergo the extensive conjugation (Ͼ60%) that codeine undergoe

    Abstract

    No full text
    corecore