369 research outputs found
Is current management of the Antarctic krill fishery in the Atlantic sector of the Southern Ocean precautionary?
This paper explains the management of the Antarctic krill (Euphausia superba) fishery in the Atlantic sector of the Southern Ocean, and current knowledge about the state of the regional krill stock. In this region, krill fishing is permitted in an area of approximately 3.5 million km2 which is divided into four subareas (labelled Subareas 48.1 to 48.4) for management and reporting purposes. The effective regional catch limit (or âtrigger levelâ), established in 1991, is 0.62 million tonnes yearâ1, equivalent to ~1% of the regional biomass estimated in 2000. Each subarea has also had its own catch limit, between 0.093 and 0.279 million tonnes yearâ1, since 2009. There is some evidence for a decline in the abundance of krill in the 1980s, but no evidence of a further decline in recent decades. Local-scale monitoring programs have been established in three of the subareas to monitor krill biomass in survey grids covering between 10 000 and 125 000 km2. Cautious extrapolation from these local monitoring programs provides conservative estimates of the regional biomass in recent years. This suggests that fishing at the trigger level would be equivalent to a long-term exploitation rate (annual catch divided by biomass) of <7%, which is below the 9.3% level considered appropriate to maintain the krill stock and support krill predators.
Subarea catch limits exceed 9.3% of conservatively estimated subarea biomass in up
to 20% of years due to high variability in krill biomass indices. The actual exploitation
rate in each subarea has remained <3% because annual catches have been <50% of the
trigger level since 1991. Comparison with the 9.3% reference exploitation rate suggests
that current management is precautionary at the regional scale. The subarea catch limits
help prevent excessive concentration of catch at the subarea scale. Finer-scale management
might be necessary to manage the risk of adverse impacts which might occur as a
result of concentrated fishing in sensitive areas or climate change. Frequent assessment
of the krill stock will enhance CCAMLRâs ability to manage these risks. Continuing the
local monitoring programs will provide valuable information on krill variability, but more
information is required on how the monitored biomass relates to biomass at the subarea
and regional scales
Towards a Proof Theory of G\"odel Modal Logics
Analytic proof calculi are introduced for box and diamond fragments of basic
modal fuzzy logics that combine the Kripke semantics of modal logic K with the
many-valued semantics of G\"odel logic. The calculi are used to establish
completeness and complexity results for these fragments
Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun
During its first year of data taking, the Large Area Telescope (LAT) onboard
the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy
cosmic-ray electrons and positrons (CREs). We present the results of a
directional analysis of the CRE events, in which we searched for a flux excess
correlated with the direction of the Sun. Two different and complementary
analysis approaches were implemented, and neither yielded evidence of a
significant CRE flux excess from the Sun. We derive upper limits on the CRE
flux from the Sun's direction, and use these bounds to constrain two classes of
dark matter models which predict a solar CRE flux: (1) models in which dark
matter annihilates to CREs via a light intermediate state, and (2) inelastic
dark matter models in which dark matter annihilates to CREs.Comment: 18 pages, 8 figures, accepted for publication in Physical Review D -
contact authors: Francesco Loparco ([email protected]), M. Nicola Mazziotta
([email protected]) and Jennifer Siegal-Gaskins ([email protected]
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
Gamma-ray flares from the Crab Nebula
A young and energetic pulsar powers the well-known Crab Nebula. Here we
describe two separate gamma-ray (photon energy >100 MeV) flares from this
source detected by the Large Area Telescope on board the Fermi Gamma-ray Space
Telescope. The first flare occurred in February 2009 and lasted approximately
16 days. The second flare was detected in September 2010 and lasted
approximately 4 days. During these outbursts the gamma-ray flux from the nebula
increased by factors of four and six, respectively. The brevity of the flares
implies that the gamma rays were emitted via synchrotron radiation from PeV
(10^15 eV) electrons in a region smaller than 1.4 10^-2 pc. These are the
highest energy particles that can be associated with a discrete astronomical
source, and they pose challenges to particle acceleration theory.Comment: Contact authors: Rolf Buehler,[email protected]; Stefan
Funk,[email protected]; Roger Blandford,rdb3@stanford ; 16 pages,2
figure
Fermi observations of high-energy gamma-ray emission from GRB 090217A
The Fermi observatory is advancing our knowledge of Gamma-Ray Bursts (GRBs)
through pioneering observations at high energies, covering more than 7 decades
in energy with the two on-board detectors, the Large Area Telescope (LAT) and
the Gamma-ray Burst Monitor (GBM). Here we report on the observation of the
long GRB 090217A which triggered the GBM and has been detected by the LAT with
a significance greater than 9 sigma. We present the GBM and LAT observations
and on-ground analyses, including the time-resolved spectra and the study of
the temporal profile from 8 keV up to 1 GeV. All spectra are well reproduced by
a Band model. We compare these observations to the first two LAT-detected, long
bursts GRB 080825C and GRB 080916C. These bursts were found to have
time-dependent spectra and exhibited a delayed onset of the high-energy
emission, which are not observed in the case of GRB 090217A. We discuss some
theoretical implications for the high-energy emission of GRBs.Comment: 17 pages, 4 figures. Contact Authors: Fred, Piron; Sara, Cutini;
Andreas, von Kienli
Constraints on the Cosmic-Ray Density Gradient beyond the Solar Circle from Fermi gamma-ray Observations of the Third Galactic Quadrant
We report an analysis of the interstellar -ray emission in the third
Galactic quadrant measured by the {Fermi} Large Area Telescope. The window
encompassing the Galactic plane from longitude 210\arcdeg to 250\arcdeg has
kinematically well-defined segments of the Local and the Perseus arms, suitable
to study the cosmic-ray densities across the outer Galaxy. We measure no large
gradient with Galactocentric distance of the -ray emissivities per
interstellar H atom over the regions sampled in this study. The gradient
depends, however, on the optical depth correction applied to derive the \HI\
column densities. No significant variations are found in the interstellar
spectra in the outer Galaxy, indicating similar shapes of the cosmic-ray
spectrum up to the Perseus arm for particles with GeV to tens of GeV energies.
The emissivity as a function of Galactocentric radius does not show a large
enhancement in the spiral arms with respect to the interarm region. The
measured emissivity gradient is flatter than expectations based on a cosmic-ray
propagation model using the radial distribution of supernova remnants and
uniform diffusion properties. In this context, observations require a larger
halo size and/or a flatter CR source distribution than usually assumed. The
molecular mass calibrating ratio, , is
found to be
in the Local-arm clouds and is not significantly sensitive to the choice of
\HI\ spin temperature. No significant variations are found for clouds in the
interarm region.Comment: Corresponding authors: I. A. Grenier ([email protected]); T.
Mizuno ([email protected]); L. Tibaldo
([email protected]) accepted for publication in Ap
Fermi Gamma-ray Space Telescope Observations of the Gamma-ray Outburst from 3C 454.3 in November 2010
The flat-spectrum radio quasar 3C 454.3 underwent an extraordinary 5-day
gamma-ray outburst in November 2010 where the daily flux measured with the
Fermi Large Area Telescope (LAT) at photon energies E>100 MeV reached (66+/-2)
x 10^-6 ph cm^-2 s^-1. This is a factor of 3 higher than its previous maximum
flux recorded in December 2009 and ~5 times brighter than the Vela pulsar,
which is normally the brightest source in the gamma-ray sky. The 3-hr peak flux
was (85+/-5) x 10^-6 ph cm^-2 s^-1, corresponding to an apparent isotropic
luminosity of 2.1+/-0.2 10^50 erg s^-1, the highest ever recorded for a blazar.
In this paper, we investigate the features of this exceptional event in the
gamma-ray band of the Fermi-LAT. In contrast to previous flares of the same
source observed with the Fermi-LAT, clear spectral changes are observed during
the flare.Comment: Contact authors: Lise Escande, Charles Dermer and Benoit Lott. One
new figure. Accepted for publication by ApJ
Fermi Gamma-ray Space Telescope Observations of Recent Gamma-ray Outbursts from 3C 454.3
The flat spectrum radio quasar 3C~454.3 underwent an extraordinary outburst
in December 2009 when it became the brightest gamma-ray source in the sky for
over one week. Its daily flux measured with the Fermi Large Area Telescope at
photon energies E>100 MeV reached F = 22+/-1 x 10^-6 ph cm^-2 s^-1,
representing the highest daily flux of any blazar ever recorded in high-energy
gamma-rays. It again became the brightest source in the sky in 2010 April,
triggering a pointed-mode observation by Fermi. The correlated gamma-ray
temporal and spectral properties during these exceptional events are presented
and discussed. The main results show flux variability over time scales less
than 3 h and very mild spectral variability with an indication of gradual
hardening preceding major flares. No consistent loop pattern emerged in the
gamma-ray spectral index vs flux plane. A minimum Doppler factor of ~ 15 is
derived, and the maximum energy of a photon from 3C 454.3 is ~ 20 GeV. The
spectral break at a few GeV is inconsistent with Klein-Nishina softening from
power-law electrons scattering Ly_alpha line radiation, and a break in the
underlying electron spectrum in blazar leptonic models is implied.Comment: submitted to the Astrophysical Journa
Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni
Novae are thermonuclear explosions on a white dwarf surface fueled by mass
accreted from a companion star. Current physical models posit that shocked
expanding gas from the nova shell can produce X-ray emission but emission at
higher energies has not been widely expected. Here, we report the Fermi Large
Area Telescope detection of variable gamma-ray (0.1-10 GeV) emission from the
recently-detected optical nova of the symbiotic star V407 Cygni. We propose
that the material of the nova shell interacts with the dense ambient medium of
the red giant primary, and that particles can be accelerated effectively to
produce pi0 decay gamma-rays from proton-proton interactions. Emission
involving inverse Compton scattering of the red giant radiation is also
considered and is not ruled out.Comment: 38 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, A.B. Hill, P. Jean, S. Razzaque, K.S. Woo
- âŠ