894 research outputs found

    Graph multicoloring reduction methods and application to McDiarmid-Reed's Conjecture

    Full text link
    A (a,b)(a,b)-coloring of a graph GG associates to each vertex a set of bb colors from a set of aa colors in such a way that the color-sets of adjacent vertices are disjoints. We define general reduction tools for (a,b)(a,b)-coloring of graphs for 2≤a/b≤32\le a/b\le 3. In particular, we prove necessary and sufficient conditions for the existence of a (a,b)(a,b)-coloring of a path with prescribed color-sets on its end-vertices. Other more complex (a,b)(a,b)-colorability reductions are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice. Computations on millions of such graphs generated randomly show that our tools allow to find (in linear time) a (9,4)(9,4)-coloring for each of them. Although there remain few graphs for which our tools are not sufficient for finding a (9,4)(9,4)-coloring, we believe that pursuing our method can lead to a solution of the conjecture of McDiarmid-Reed.Comment: 27 page

    Extended core and choosability of a graph

    Full text link
    A graph GG is (a,b)(a,b)-choosable if for any color list of size aa associated with each vertices, one can choose a subset of bb colors such that adjacent vertices are colored with disjoint color sets. This paper shows an equivalence between the (a,b)(a,b)-choosability of a graph and the (a,b)(a,b)-choosability of one of its subgraphs called the extended core. As an application, this result allows to prove the (5,2)(5,2)-choosability and (7,3)(7,3)-colorability of triangle-free induced subgraphs of the triangular lattice.Comment: 10 page

    Vectorial solutions to list multicoloring problems on graphs

    Full text link
    For a graph GG with a given list assignment LL on the vertices, we give an algebraical description of the set of all weights ww such that GG is (L,w)(L,w)-colorable, called permissible weights. Moreover, for a graph GG with a given list LL and a given permissible weight ww, we describe the set of all (L,w)(L,w)-colorings of GG. By the way, we solve the {\sl channel assignment problem}. Furthermore, we describe the set of solutions to the {\sl on call problem}: when ww is not a permissible weight, we find all the nearest permissible weights w′w'. Finally, we give a solution to the non-recoloring problem keeping a given subcoloring.Comment: 10 page

    Choosability of a weighted path and free-choosability of a cycle

    Full text link
    A graph GG with a list of colors L(v)L(v) and weight w(v)w(v) for each vertex vv is (L,w)(L,w)-colorable if one can choose a subset of w(v)w(v) colors from L(v)L(v) for each vertex vv, such that adjacent vertices receive disjoint color sets. In this paper, we give necessary and sufficient conditions for a weighted path to be (L,w)(L,w)-colorable for some list assignments LL. Furthermore, we solve the problem of the free-choosability of a cycle.Comment: 9 page

    De la passion des archives aux archives de La Passion : Le fonds Julien Daoust

    Get PDF

    Le roman — Au nom du père, des petits-fils et des grands-pères

    Get PDF

    Réjean Ducharme, l’Océantume, Paris, Gallimard, 1968, 190 p.

    Get PDF

    Le théâtre

    Get PDF
    • …
    corecore