101 research outputs found

    Plans de prĂ©vention des risques incendie de forĂȘt et acceptabilitĂ© des contraintes ElĂ©ments de rĂ©flexions juridiques

    Get PDF
    A partir de l'Ă©tude juridique menĂ©e dans le cadre d'un programme de recherches « Etude prospective sur la mise en uvre des plans de prĂ©vention des risques d'incendie de forĂȘt. Quel devenir pour les zones rouges des P.P.R.I.F. ? », financĂ© par le G.I.S. Incendie de ForĂȘt, cet article prĂ©sente une interprĂ©tation des rĂ©sultats sous l'angle de la problĂ©matique de l'acceptabilitĂ© des P.P.R.I.F. Les auteurs proposent un ensemble d'orientations susceptibles de permettre une meilleure acceptation des P.P.R.I.F. et de leurs contraintes tant de la part des propriĂ©taires concernĂ©s que de celle des autoritĂ©s locales

    Drug-loaded erythrocytes: on the road toward marketing approval.

    Get PDF
    Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available

    Electron - nuclear recoil discrimination by pulse shape analysis

    Full text link
    In the framework of the ``ULTIMA'' project, we use ultra cold superfluid 3He bolometers for the direct detection of single particle events, aimed for a future use as a dark matter detector. One parameter of the pulse shape observed after such an event is the thermalization time constant. Until now it was believed that this parameter only depends on geometrical factors and superfluid 3He properties, and that it is independent of the nature of the incident particles. In this report we show new results which demonstrate that a difference for muon- and neutron events, as well as events simulated by heater pulses exist. The possibility to use this difference for event discrimination in a future dark matter detector will be discussed.Comment: Proseedings of QFS 2007, Kazan, Russia; 8 pages, 4 figures. Submited to J. Low Temp. Phy

    Magnetization plateau in a two-dimensional multiple-spin exchange model

    Full text link
    We study a multiple-spin exchange model on a triangular lattice, which is a possible model for low-density solid 3He films. Due to strong competitions between ferromagnetic three-spin exchange and antiferromagnetic four-spin one, the ground states are highly degenerate in the classical limit. At least 2^{L/2}-fold degeneracy exists on the L*L triangular lattice except for the SO(3) symmetry. In the magnetization process, we found a plateau at m/m_{sat}=1/2, in which the ground state is "uuud state" (a collinear state with four sublattices). The 1/2-plateau appears due to the strong four-spin exchange interaction. This plateau survives against both quantum and thermal fluctuations. Under a magnetic field which realizes the "uuud" ordered state, a phase transition occurs at a finite temperature. We predict that low-density solid 3He thin films may show the 1/2-plateau in the magnetization process. Experimental observation of the plateau will verify strength of the four-spin exchange. It is also discussed that this magnetization plateau can be understood as an insulating-conducting transition in a particle picture.Comment: 10 pages, RevTeX, 12 figures, added a reference and corrected typos, to be published in Phys.Rev.B (01 APR 99

    Thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets in an external magnetic field within Green function formalism

    Full text link
    The thermodynamics of low dimensional spin-1/2 Heisenberg ferromagnets (HFM) in an external magnetic field is investigated within a second-order two-time Green function formalism in the wide temperature and field range. A crucial point of the proposed scheme is a proper account of the analytical properties for the approximate transverse commutator Green function obtained as a result of the decoupling procedure. A good quantitative description of the correlation functions, magnetization, susceptibility, and heat capacity of the HFM on a chain, square and triangular lattices is found for both infinite and finite-sized systems. The dependences of the thermodynamic functions of 2D HFM on the cluster size are studied. The obtained results agree well with the corresponding data found by Bethe ansatz, exact diagonalization, high temperature series expansions, and quantum Monte Carlo simulations.Comment: 11 pages, 14 figure

    Spin-Wave Theory of the Multiple-Spin Exchange Model on a Triangular Lattice in a Magnetic Field : 3-Sublattice Structures

    Full text link
    We study the spin wave in the S=1/2 multiple-spin exchange model on a triangular lattice in a magnetic field within the linear spin-wave theory. We take only two-, three- and four-spin exchange interactions into account and restrict ourselves to the region where a coplanar three-sublattice state is the mean-field ground state. We found that the Y-shape ground state survives quantum fluctuations and the phase transition to a phase with a 6-sublattice structure occurs with softening of the spin wave. We estimated the quantum corrections to the ground state sublattice magnetizations due to zero-point spin-wave fluctuations.Comment: 8 pages, 20 figure

    Impurity Effects on the A_1-A_2 Splitting of Superfluid 3He in Aerogel

    Full text link
    When liquid 3He is impregnated into silica aerogel a solid-like layer of 3He atoms coats the silica structure. The surface 3He is in fast exchange with the liquid on NMR timescales. The exchange coupling of liquid 3He quasiparticles with the localized 3He spins modifies the scattering of 3He quasiparticles by the aerogel structure. In a magnetic field the polarization of the solid spins gives rise to a splitting of the scattering cross-section of for `up' vs. `down' spin quasiparticles, relative to the polarization of the solid 3He. We discuss this effect, as well as the effects of non-magnetic scattering, in the context of a possible splitting of the superfluid transition for ↑↑\uparrow\uparrow vs. ↓↓\downarrow\downarrow Cooper pairs for superfluid 3He in aerogel, analogous to the A_1-A_2 splitting in bulk 3He. Comparison with the existing measurements of T_c for B< 5 kG, which show no evidence of an A_1-A_2 splitting, suggests a liquid-solid exchange coupling of order J = 0.1 mK. Measurements at higher fields, B > 20 kG, should saturate the polarization of the solid 3He and reveal the A_1-A_2 splitting.Comment: 7 pages, 3 figure

    Magnetic properties and concurrence for fluid 3He on kagome lattice

    Full text link
    We present the results of magnetic properties and entanglement for kagome lattice using Heisenberg model with two-, and three-site exchange interactions in strong magnetic field. Kagome lattice correspond to the third layer of fluid 3He absorbed on the surface of graphite. The magnetic properties and concurrence as a measure of pairwise thermal entanglement are studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. The system exhibits different magnetic behaviors, depending on the values of the exchange parameters (J2, J3). We have obtained the magnetization plateaus at low temperatures. The central theme of the paper is the comparing the entanglement and magnetic behavior for kagome lattice. We have found that in the antiferromagnetic region behaviour of the concurrence coincides with the magnetization one.Comment: Physics of Atomic Nuclei (accepted for publication) 201

    Probing Bogoliubov Quasiparticles in Superfluid 3He with a ‘Vibrating-Wire Like’ MEMS Device

    Get PDF
    International audienceWe have measured the interaction between superfluid 3 He-B and a micro-machined goalpost-shaped device at temperatures below 0.2 T c. The measured damping follows well the theory developed for vibrating wires, in which the An-dreev reflection of quasiparticles in the flow field around the moving structure leads to a nonlinear frictional force. At low velocities the damping force is proportional to velocity while it tends to saturate for larger excitations. Above a velocity of 2.6 mms −1 the damping abruptly increases, which is interpreted in terms of Cooper-pair breaking. Interestingly, this critical velocity is significantly lower than reported with other mechanical probes immersed in superfluid 3 He. Furthermore , we report on a nonlinear resonance shape for large motion amplitudes that we interpret as an inertial effect due to quasiparticle friction, but other mechanisms could possibly be invoked as well. PACS numbers: 85.85.+j, 67.30.H-, 67.30.e

    Possible chiral phase transition in two-dimensional solid 3^3He

    Full text link
    We study a spin system with two- and four-spin exchange interactions on the triangular lattice, which is a possible model for the nuclear magnetism of solid 3^3He layers. It is found that a novel spin structure with scalar chiral order appears if the four-spin interaction is dominant. Ground-state properties are studied using the spin-wave approximation. A phase transition concerning the scalar chirality occurs at a finite temperature, even though the dimensionality of the system is two and the interaction has isotropic spin symmetry. Critical properties of this transition are studied with Monte Carlo simulations in the classical limit.Comment: 4 pages, Revtex, 4 figures, to appear in Phys.Rev.Let
    • 

    corecore