54 research outputs found

    Measuring and Understanding Throughput of Network Topologies

    Full text link
    High throughput is of particular interest in data center and HPC networks. Although myriad network topologies have been proposed, a broad head-to-head comparison across topologies and across traffic patterns is absent, and the right way to compare worst-case throughput performance is a subtle problem. In this paper, we develop a framework to benchmark the throughput of network topologies, using a two-pronged approach. First, we study performance on a variety of synthetic and experimentally-measured traffic matrices (TMs). Second, we show how to measure worst-case throughput by generating a near-worst-case TM for any given topology. We apply the framework to study the performance of these TMs in a wide range of network topologies, revealing insights into the performance of topologies with scaling, robustness of performance across TMs, and the effect of scattered workload placement. Our evaluation code is freely available

    Parallel Load Balancing on Constrained Client-Server Topologies

    Get PDF
    We study parallel \emph{Load Balancing} protocols for a client-server distributed model defined as follows. There is a set \sC of nn clients and a set \sS of nn servers where each client has (at most) a constant number d1d \geq 1 of requests that must be assigned to some server. The client set and the server one are connected to each other via a fixed bipartite graph: the requests of client vv can only be sent to the servers in its neighborhood N(v)N(v). The goal is to assign every client request so as to minimize the maximum load of the servers. In this setting, efficient parallel protocols are available only for dense topolgies. In particular, a simple symmetric, non-adaptive protocol achieving constant maximum load has been recently introduced by Becchetti et al \cite{BCNPT18} for regular dense bipartite graphs. The parallel completion time is \bigO(\log n) and the overall work is \bigO(n), w.h.p. Motivated by proximity constraints arising in some client-server systems, we devise a simple variant of Becchetti et al's protocol \cite{BCNPT18} and we analyse it over almost-regular bipartite graphs where nodes may have neighborhoods of small size. In detail, we prove that, w.h.p., this new version has a cost equivalent to that of Becchetti et al's protocol (in terms of maximum load, completion time, and work complexity, respectively) on every almost-regular bipartite graph with degree Ω(log2n)\Omega(\log^2n). Our analysis significantly departs from that in \cite{BCNPT18} for the original protocol and requires to cope with non-trivial stochastic-dependence issues on the random choices of the algorithmic process which are due to the worst-case, sparse topology of the underlying graph
    corecore