6,802 research outputs found
Shapes and Dynamics from the Time-Dependent Mean Field
Explaining observed properties in terms of underlying shape degrees of
freedom is a well--established prism with which to understand atomic nuclei.
Self--consistent mean--field models provide one tool to understand nuclear
shapes, and their link to other nuclear properties and observables. We present
examples of how the time--dependent extension of the mean--field approach can
be used in particular to shed light on nuclear shape properties, particularly
looking at the giant resonances built on deformed nuclear ground states, and at
dynamics in highly-deformed fission isomers. Example calculations are shown of
Si in the first case, and Pu in the latter case.Comment: 9 pages, 5 figures, to appear in proceedings of International
Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects"
(SDANCA-15), 8-10 October 2015, Sofia, Bulgari
Cause of the charge radius isotope shift at the \emph{N}=126 shell gap
We discuss the mechanism causing the `kink' in the charge radius isotope
shift at the N=126 shell closure. The occupation of the 1 neutron
orbital is the decisive factor for reproducing the experimentally observed
kink. We investigate whether this orbital is occupied or not by different
Skyrme effective interactions as neutrons are added above the shell closure.
Our results demonstrate that several factors can cause an appreciable
occupation of the 1 neutron orbital, including the magnitude of the
spin-orbit field, and the isoscalar effective mass of the Skyrme interaction.
The symmetry energy of the effective interaction has little influence upon its
ability to reproduce the kink.Comment: 4 pages, 4 figures, to be submitted to proceedings of INPC 201
An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems
We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee–Yang–Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand–protein and ligand–DNA interactions
Non Abelian Sugawara Construction and the q-deformed N=2 Superconformal Algebra
The construction of a q-deformed N=2 superconformal algebra is proposed in
terms of level 1 currents of quantum affine
Lie algebra and a single real Fermi field. In particular, it suggests the
expression for the q-deformed Energy-Momentum tensor in the Sugawara form. Its
constituents generate two isomorphic quadratic algebraic structures. The
generalization to is also proposed.Comment: AMSLATEX, 21page
Foliation of the Kottler-Schwarzschild-De Sitter Spacetime by Flat Spacelike Hypersurfaces
There exist Kruskal like coordinates for the Reissner-Nordstrom (RN) black
hole spacetime which are regular at coordinate singularities. Non existence of
such coordinates for the extreme RN black hole spacetime has already been
shown. Also the Carter coordinates available for the extreme case are not
manifestly regular at the coordinate singularity, therefore, a numerical
procedure was developed to obtain free fall geodesics and flat foliation for
the extreme RN black hole spacetime. The Kottler-Schwarzschild-de Sitter
(KSSdS) spacetime geometry is similar to the RN geometry in the sense that,
like the RN case, there exist non-singular coordinates when there are two
distinct coordinate singularities. There are no manifestly regular coordinates
for the extreme KSSdS case. In this paper foliation of all the cases of the
KSSdS spacetime by flat spacelike hypersurfaces is obtained by introducing a
non-singular time coordinate.Comment: 12 pages, 4 figure
Explicit Construction of Spin 4 Casimir Operator in the Coset Model
We generalize the Goddard-Kent-Olive (GKO) coset construction to the
dimension 5/2 operator for and compute the fourth order
Casimir invariant in the coset model with the generic unitary minimal
series that can be viewed as perturbations of the
limit, which has been investigated previously in the realization of
free fermion model.Comment: 11 page
Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes
We present a detailed study of the mechanism for oxidative heteroarylation, based on DFT calculations and experimental observations. We propose binuclear Au(II)–Au(II) complexes to be key intermediates in the mechanism for gold catalyzed oxidative heteroarylation. The reaction is thought to proceed via a gold redox cycle involving initial oxidation of Au(I) to binuclear Au(II)–Au(II) complexes by Selectfluor, followed by heteroauration and reductive elimination. While it is tempting to invoke a transmetalation/reductive elimination mechanism similar to that proposed for other transition metal complexes, experimental and DFT studies suggest that the key C–C bond forming reaction occurs via a bimolecular reductive elimination process (devoid of transmetalation). In addition, the stereochemistry of the elimination step was determined experimentally to proceed with complete retention. Ligand and halide effects played an important role in the development and optimization of the catalyst; our data provides an explanation for the ligand effects observed experimentally, useful for future catalyst development. Cyclic voltammetry data is presented that supports redox synergy of the Au···Au aurophilic interaction. The monometallic reductive elimination from mononuclear Au(III) complexes is also studied from which we can predict a ~ 15 kcal/mol advantage for bimetallic reductive elimination
- …