90 research outputs found

    Generating a taxonomy for genetic conditions relevant to reproductive planning

    Get PDF
    As genome or exome sequencing (hereafter genome-scale sequencing) becomes more integrated into standard care, carrier testing is an important possible application. Carrier testing using genome-scale sequencing can identify a large number of conditions, but choosing which conditions/genes to evaluate as well as which results to disclose can be complicated. Carrier testing generally occurs in the context of reproductive decision-making and involves patient values in a way that other types of genetic testing may not. The Kaiser Permanente Clinical Sequencing Exploratory Research program is conducting a randomized clinical trial of preconception carrier testing that allows participants to select their preferences for results from among broad descriptive categories rather than selecting individual conditions. This paper describes 1) the criteria developed by the research team, the return of results committee (RORC), and stakeholders for defining the categories; 2) the process of refining the categories based on input from patient focus groups and validation through a patient survey; and, 3) how the RORC then assigned specific gene-condition pairs to taxonomy categories being piloted in the trial. The development of four categories (serious, moderate/mild, unpredictable, late onset) for sharing results allows patients to select results based on their values without separately deciding their interest in knowing their carrier status for hundreds of conditions. A fifth category, lifespan limiting, was always shared. The lessons learned may be applicable in other results disclosure situations, such as incidental findings

    Leveraging Biospecimen Resources for Discovery or Validation of Markers for Early Cancer Detection

    Get PDF
    Validation of early detection cancer biomarkers has proven to be disappointing when initial promising claims have often not been reproducible in diagnostic samples or did not extend to prediagnostic samples. The previously reported lack of rigorous internal validity (systematic differences between compared groups) and external validity (lack of generalizability beyond compared groups) may be effectively addressed by utilizing blood specimens and data collected within well-conducted cohort studies. Cohort studies with prediagnostic specimens (eg, blood specimens collected prior to development of clinical symptoms) and clinical data have recently been used to assess the validity of some early detection biomarkers. With this background, the Division of Cancer Control and Population Sciences (DCCPS) and the Division of Cancer Prevention (DCP) of the National Cancer Institute (NCI) held a joint workshop in August 2013. The goal was to advance early detection cancer research by considering how the infrastructure of cohort studies that already exist or are being developed might be leveraged to include appropriate blood specimens, including prediagnostic specimens, ideally collected at periodic intervals, along with clinical data about symptom status and cancer diagnosis. Three overarching recommendations emerged from the discussions: 1) facilitate sharing of existing specimens and data, 2) encourage collaboration among scientists developing biomarkers and those conducting observational cohort studies or managing healthcare systems with cohorts followed over time, and 3) conduct pilot projects that identify and address key logistic and feasibility issues regarding how appropriate specimens and clinical data might be collected at reasonable effort and cost within existing or future cohorts

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Jane M. Olson (December 6, 1952–May 2, 2004)

    No full text

    The Amyloid Precursor Protein Locus and Very-Late-Onset Alzheimer Disease

    Get PDF
    Although mutations in the amyloid-β precursor protein (APP) gene are known to confer high risk of Alzheimer disease (AD) to a small percentage of families in which it has early onset, convincing evidence of a major role for the APP locus in late-onset AD has not been forthcoming. In this report, we have used a covariate-based affected-sib-pair linkage method to analyze the chromosome 21 clinical and genetic data obtained on affected sibships by the National Institute of Mental Health Alzheimer Disease Genetics Initiative. The baseline model (without covariates) gave a LOD score of 0.02, which increases to 1.43 when covariates representing the additive effects of E2 and E4 are added. Larger increases in LOD scores were found when age at last examination/death (LOD score 5.54; P=.000002) or age at onset plus disease duration (LOD score 5.63; P=.000006) were included in the linkage model. We conclude that the APP locus may predispose to AD in the very elderly
    corecore