39 research outputs found

    Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

    Get PDF
    peer-reviewedH.D.D., A.J.C., P.J.B. and B.J.H. would like to acknowledge the Dairy Futures Cooperative Research Centre for funding. H.P. and R.F. acknowledge funding from the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr ‘Synbreed—Synergistic Plant and Animal Breeding’ (grant 0315527B). H.P., R.F., R.E. and K.-U.G. acknowledge the Arbeitsgemeinschaft Süddeutscher Rinderzüchter, the Arbeitsgemeinschaft Österreichischer Fleckviehzüchter and ZuchtData EDV Dienstleistungen for providing genotype data. A. Bagnato acknowledges the European Union (EU) Collaborative Project LowInputBreeds (grant agreement 222623) for providing Brown Swiss genotypes. Braunvieh Schweiz is acknowledged for providing Brown Swiss phenotypes. H.P. and R.F. acknowledge the German Holstein Association (DHV) and the Confederación de Asociaciones de Frisona Española (CONCAFE) for sharing genotype data. H.P. was financially supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) (grant PA 2789/1-1). D.B. and D.C.P. acknowledge funding from the Research Stimulus Fund (11/S/112) and Science Foundation Ireland (14/IA/2576). M.S. and F.S.S. acknowledge the Canadian Dairy Network (CDN) for providing the Holstein genotypes. P.S. acknowledges funding from the Genome Canada project entitled ‘Whole Genome Selection through Genome Wide Imputation in Beef Cattle’ and acknowledges WestGrid and Compute/Calcul Canada for providing computing resources. J.F.T. was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under awards 2013-68004-20364 and 2015-67015-23183. A. Bagnato, F.P., M.D. and J.W. acknowledge EU Collaborative Project Quantomics (grant 516 agreement 222664) for providing Brown Swiss and Finnish Ayrshire sequences and genotypes. A.C.B. and R.F.V. acknowledge funding from the public–private partnership ‘Breed4Food’ (code BO-22.04-011- 001-ASG-LR) and EU FP7 IRSES SEQSEL (grant 317697). A.C.B. and R.F.V. acknowledge CRV (Arnhem, the Netherlands) for providing data on Dutch and New Zealand Holstein and Jersey bulls.Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Catalytic Synthesis of Single-Layer Carbon Nanotubes with a Wide Range of Diameters

    Full text link
    We have synthesized single-layer carbon nanotubes by co-vaporizing cobalt with carbon in an arc fullerene generator and have identified conditions that lead to high yields. The diameter distribution of the tubes and their morphologies are studied using transmission electron microscopy. For nanotubes produced using cobalt and carbon, the tube diameters range from 1 to 2 nm with distribution peaks at 1.3 and 1.5 nm. When sulfur is added to the carbon and cobalt, production of single-layer nanotubes is enhanced and the tubes have a wider range of diameters (from 1 to 6 nm). The diameter distribution for these nanotubes shows prominent peaks at 1.3 and 1.5 nm and additional maxima at 2.7 and 3.6 nm. Cobalt-containing crystallites, some encapsulated in graphitic polyhedra, are produced with the nanotubes and are found in the soot away from the cathode

    Mechanisms and Energetics of Free Radical Initiated Disulfide Bond Cleavage in Model Peptides and Insulin by Mass Spectrometry

    Full text link
    We investigate the mechanism of disulfide bond cleavage in gaseous peptide and protein ions initiated by a covalently-attached regiospecific acetyl radical using mass spectrometry (MS). Highly selective S-S bond cleavages with some minor C-S bond cleavages are observed by a single step of collisional activation. We show that even multiple disulfide bonds in intact bovine insulin are fragmented in the MS2 stage, releasing the A- and B-chains with a high yield, which has been challenging to achieve by other ion activation methods. Yet, regardless of the previous reaction mechanism studies, it has remained unclear why (1) disulfide bond cleavage is preferred to peptide backbone fragmentation, and why (2) the S-S bond that requires the higher activation energy conjectured in previously suggested mechanisms is more prone to be cleaved than the C-S bond by hydrogen-deficient radicals. To probe the mechanism of these processes, model peptides possessing deuterated β-carbon(s) at the disulfide bond are employed. It is suggested that the favored pathway of S-S bond cleavage is triggered by direct acetyl radical attack at sulfur with concomitant cleavage of the S-S bond (SH2). The activation energy for this process is substantially lower by ∼9-10 kcal mol-1 than those of peptide backbone cleavage processes determined by density functional quantum chemical calculations. Minor reaction pathways are initiated by hydrogen abstraction from the α-carbon or the β-carbon of a disulfide, followed by β-cleavages yielding C-S or S-S bond scissions. The current mechanistic findings should be generally applicable to other radical-driven disulfide bond cleavages with different radical species such as the benzyl and methyl pyridyl radicals

    Cooperative Effects Associated with High Electrolyte Concentrations in Driving the Conversion of CO2 to C2H4 on Copper

    Full text link
    Increasing the product selectivity and decreasing the cost of product separation is critical for large scale application of electrochemical CO2 reduction (ECO2R). We hypothesize that highly concentrated aqueous electrolytes can tune the microenvironment of the catalyst/electrolyte interface and improve product selectivity. Compared to a conventional electrolyte concentration of 1 M HCOOK, the use of a 7.1 M HCOOK electrolyte increases the FE ratio of C2H4/CO from 2.2 ± 0.3 to 18.3 ± 4.8 at -1.08 V vs RHE on a Cu gas diffusion electrode. Based on electrochemical analysis and AIMD simulation, the identity and concentration of the cation and anion play more important roles in controlling the CO2R reaction pathway than the bulk CO2 solubility and the bulk pH of electrolytes. In-situ ATR-SEIRAS suggests that, unlike 1 M HCOOK, the *CO-bridge binding mode on Cu is dominant in 7.1 M HCOOK electrolyte, which potentially results in less CO release and higher yield of C2H4. This study demonstrates that while we can tailor the electrolyte composition to shift product selectivity, the factors that control the product selectivity are numerous and cannot be distilled down into one correlated property-reactivity relationship. Thus, when CO2R conditions are changed, care must be taken to understand their effects on the bulk electrolyte properties and the electrode-electrolyte interface

    Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis

    Full text link
    Hemes c are characterized by their covalent attachment to a polypeptide via a widely conserved CXXCH motif. There are multiple biological systems that facilitate heme c biogenesis. System I, the cytochrome c maturation (CCM) system, is found in many bacteria and is commonly employed in the maturation of bacterial cytochromes c in Escherichia coli-based expression systems. System III, cytochrome c heme lyase (CCHL), is an enzyme found in the mitochondria of many eukaryotes and is used for heterologous expression of mitochondrial holocytochromes c. To test CCM specificity, a series of Hydrogenobacter thermophilus cytochrome c(552) variants was successfully expressed and matured by the CCM system with CX(n)CH motifs where n=1–4, further extending the known substrate flexibility of the CCM system by successful maturation of a bacterial cytochrome c with a novel CXCH motif. Horse cytochrome c variants with both expanded and contracted attachment motifs (n=1–3) were also tested for expression and maturation by both CCM and CCHL, allowing direct comparison of CCM and CCHL substrate specificities. Successful maturation of horse cytochrome c by CCHL with an extended CXXXCH motif was observed, demonstrating that CCHL shares the ability of CCM to mature hemes c with extended heme attachment motifs. In contrast, two single amino acid mutants were found in horse cytochrome c that severely limit maturation by CCHL, yet were efficiently matured with CCM. These results identify potentially important residues for the substrate recognition of CCHL
    corecore