7,356 research outputs found

    Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices

    Get PDF
    Donor−acceptor binding of the π-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT^(4+)) with the π-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519−525; Nature 2007, 445, 414−417) and nanoelectromechanical systems. The rate of CBPQT^(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT^4+ ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of ~10^9−7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments

    Foliation of the Kottler-Schwarzschild-De Sitter Spacetime by Flat Spacelike Hypersurfaces

    Full text link
    There exist Kruskal like coordinates for the Reissner-Nordstrom (RN) black hole spacetime which are regular at coordinate singularities. Non existence of such coordinates for the extreme RN black hole spacetime has already been shown. Also the Carter coordinates available for the extreme case are not manifestly regular at the coordinate singularity, therefore, a numerical procedure was developed to obtain free fall geodesics and flat foliation for the extreme RN black hole spacetime. The Kottler-Schwarzschild-de Sitter (KSSdS) spacetime geometry is similar to the RN geometry in the sense that, like the RN case, there exist non-singular coordinates when there are two distinct coordinate singularities. There are no manifestly regular coordinates for the extreme KSSdS case. In this paper foliation of all the cases of the KSSdS spacetime by flat spacelike hypersurfaces is obtained by introducing a non-singular time coordinate.Comment: 12 pages, 4 figure

    Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue

    Full text link
    We have measured details of the quasi one-dimensional Fermi-surface sections in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue using angle-dependent millimetre-wave techniques. There are significant differences in the corrugations of the Fermi surfaces in the deuterated and undeuterated salts. We suggest that this is important in understanding the inverse isotope effect, where the superconducting transition temperature rises on deuteration. The data support models for superconductivity which invoke electron-electron interactions depending on the topological properties of the Fermi surface

    Angle Dependent Magnetoresistance of the Layered Organic Superconductor \kappa-(ET)2Cu(NCS)2: Simulation and Experiment

    Full text link
    The angle-dependences of the magnetoresistance of two different isotopic substitutions (deuterated and undeuterated) of the layered organic superconductor \kappa-(ET)2Cu(NCS)2 are presented. The angle dependent magnetoresistance oscillations (AMRO) arising from the quasi-one-dimensional (Q1D) and quasi-two-dimensional (Q2D) Fermi surfaces in this material are often confused. By using the Boltzman transport equation extensive simulations of the AMRO are made that reveal the subtle differences between the different species of oscillation. No significant differences are observed in the electronic parameters derived from quantum oscillations and AMRO for the two isotopic substitutions. The interlayer transfer integrals are determined for both isotopic substitutions and a slight difference is observed which may account for the negative isotope effect previously reported [1]. The success of the semi-classical simulations suggests that non-Fermi liquid effects are not required to explain the interlayer-transport in this system.Comment: 15 pages, 16 figure

    Stability of nanoparticle laden aerosol liquid droplets

    Get PDF
    We develop a model for the thermodynamics and evaporation dynamics of aerosol droplets of a liquid such as water, surrounded by the gas. When the temperature and the chemical potential (or equivalently the humidity) are such that the vapour phase is the thermodynamic equilibrium state, then of course droplets of the pure liquid evaporate over a relatively short time. However, if the droplets also contain nanoparticles or any other non-volatile solute, then the droplets can become thermodynamically stable. We show that the equilibrium droplet size depends strongly on the amount and solubility of the nanoparticles within, i.e. on the nature of the particle interactions with the liquid, and of course also on the vapour temperature and chemical potential. We develop a simple thermodynamic model for such droplets and compare predictions with results from a lattice density functional theory that takes as input the same particle interaction properties, finding very good agreement. We also use dynamical density functional theory to study the evaporation/condensation dynamics of liquid from/to droplets as they equilibrate with the vapour, thereby demonstrating droplet stability
    • …
    corecore