39 research outputs found
Gene-sex interactions in schizophrenia: focus on dopamine neurotransmission
Schizophrenia is a severe mental disorder, with a highly complex and heterogenous clinical presentation. Our current perspectives posit that the pathogenic mechanisms of this illness lie in complex arrays of gene × environment interactions. Furthermore, several findings indicate that males have a higher susceptibility for schizophrenia, with earlier age of onset and overall poorer clinical prognosis. Based on these premises, several authors have recently begun exploring the possibility that the greater schizophrenia vulnerability in males may reflect specific gene × sex (G×S) interactions. Our knowledge on such G×S interactions in schizophrenia is still rudimentary; nevertheless, the bulk of preclinical evidence suggests that the molecular mechanisms for such interactions are likely contributed by the neurobiological effects of sex steroids on dopamine (DA) neurotransmission. Accordingly, several recent studies suggest a gender-specific association of certain DAergic genes with schizophrenia. These G×S interactions have been particularly documented for catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), the main enzymes catalyzing DA metabolism. In the present review, we will outline the current evidence on the interactions of DA-related genes and sex-related factors, and discuss the potential molecular substrates that may mediate their cooperative actions in schizophrenia pathogenesis
Animal Models of Virus-Induced Neurobehavioral Sequelae: Recent Advances, Methodological Issues, and Future Prospects
Converging lines of clinical and epidemiological evidence suggest that viral infections in early developmental stages may be a causal factor in neuropsychiatric disorders such as schizophrenia, bipolar disorder, and autism-spectrum disorders. This etiological link, however, remains controversial in view of the lack of consistent and reproducible associations between viruses and mental illness. Animal models of virus-induced neurobehavioral disturbances afford powerful tools to test etiological hypotheses and explore pathophysiological mechanisms. Prenatal or neonatal inoculations of neurotropic agents (such as herpes-, influenza-, and retroviruses) in rodents result in a broad spectrum of long-term alterations reminiscent of psychiatric abnormalities. Nevertheless, the complexity of these sequelae often poses methodological and interpretational challenges and thwarts their characterization. The recent conceptual advancements in psychiatric nosology and behavioral science may help determine new heuristic criteria to enhance the translational value of these models. A particularly critical issue is the identification of intermediate phenotypes, defined as quantifiable factors representing single neurochemical, neuropsychological, or neuroanatomical aspects of a diagnostic category. In this paper, we examine how the employment of these novel concepts may lead to new methodological refinements in the study of virus-induced neurobehavioral sequelae through animal models
Animal models of tic disorders: A translational perspective
Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects.
The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors.
Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders
Maladaptive defensive behaviours in monoamine oxidase A-deficient mice
This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8369466&fileId=S1461145710001483Rich evidence indicates that monoamine oxidase (MAO) A, the major enzyme catalysing the degradation of monoamine neurotransmitters, plays a key role in emotional regulation. Although MAOA deficiency is associated with reactive aggression in humans and mice, the involvement of this enzyme in defensive behaviour remains controversial and poorly understood. To address this issue, we tested MAOA knockout (KO) mice in a spectrum of paradigms and settings associated with variable degrees of threat. The presentation of novel inanimate objects induced a significant reduction in exploratory approaches and increase in defensive behaviours, such as tail-rattling, biting and digging. These neophobic responses were context-dependent and particularly marked in the home cage. In the elevated plus- and T-mazes, MAOA KO mice and wild-type (WT) littermates displayed equivalent locomotor activity and time in closed and open arms; however, MAOA KO mice featured significant reductions in risk assessment, as well as unconditioned avoidance and escape. No differences between genotypes were observed in the defensive withdrawal and emergence test. Conversely, MAOA KO mice exhibited a dramatic reduction of defensive and fear-related behaviours in the presence of predator-related cues, such as predator urine or an anaesthetized rat, in comparison with those observed in their WT littermates. The behavioural abnormalities in MAOA KO mice were not paralleled by overt alterations in sensory and microvibrissal functions. Collectively, these results suggest that MAOA deficiency leads to a general inability to appropriately assess contextual risk and attune defensive and emotional responses to environmental cues
The implication of neuroactive steroids in Tourette syndrome pathogenesis: a role for 5α-reductase?
This is the peer reviewed version of the following article: Bortolato, M., Frau, R., Godar, S. C., Mosher, L. J., Paba, S., Marrosu, F. and Devoto, P. (2013), The Implication of Neuroactive Steroids in Tourette's Syndrome Pathogenesis: A Role for 5α-Reductase?. J Neuroendocrinol, 25: 1196–1208. doi:10.1111/jne.12066, which has been published in final form at http://doi.org/10.1111/jne.12066. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Tourette syndrome (TS) is a neurodevelopmental disorder characterized by recurring motor and phonic tics. The pathogenesis of TS is thought to reflect dysregulations in the signaling of dopamine (DA) and other neurotransmitters, which lead to excitation/inhibition imbalances in cortico-striato-thalamocortical circuits. The causes of these deficits may reflect complex gene × environment × sex (G×E×S) interactions; indeed, the disorder is markedly predominant in males, with a male-to-female prevalence ratio of ~4:1. Converging lines of evidence point to neuroactive steroids as likely molecular candidates to account for GxExS interactions in TS. Building on these premises, our group has begun examining the possibility that alterations in the steroid biosynthetic process may be directly implicated in TS pathophysiology; in particular, our research has focused on 5α-reductase (5αR), the enzyme catalyzing the key rate-limiting step in the synthesis of pregnane and androstane neurosteroids. In clinical and preclinical studies, we found that 5αR inhibitors exerted marked anti-DAergic and tic-suppressing properties, suggesting a central role for this enzyme in TS pathogenesis. Based on these data, we hypothesize that enhancements in 5αR activity in early developmental stages may lead to an inappropriate activation of the “backdoor” pathway for androgen synthesis from adrenarche until the end of puberty. We predict that the ensuing imbalances in steroid homeostasis may impair the signaling of DA and other neurotransmitters, ultimately resulting in the facilitation of tics and other behavioral abnormalities in TS
Monoamine Oxidase A is Required for Rapid Dendritic Remodeling in Response to Stress
Background:
Acute stress triggers transient alterations in the synaptic release and metabolism of brain monoamine neurotransmitters. These rapid changes are essential to activate neuroplastic processes aimed at the appraisal of the stressor and enactment of commensurate defensive behaviors. Threat evaluation has been recently associated with the dendritic morphology of pyramidal cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA); thus, we examined the rapid effects of restraint stress on anxiety-like behavior and dendritic morphology in the BLA and OFC of mice. Furthermore, we tested whether these processes may be affected by deficiency of monoamine oxidase A (MAO-A), the primary enzyme catalyzing monoamine metabolism.
Methods:
Following a short-term (1–4h) restraint schedule, MAO-A knockout (KO) and wild-type (WT) mice were sacrificed, and histological analyses of dendrites in pyramidal neurons of the BLA and OFC of the animals were performed. Anxiety-like behaviors were examined in a separate cohort of animals subjected to the same experimental conditions.
Results:
In WT mice, short-term restraint stress significantly enhanced anxiety-like responses, as well as a time-dependent proliferation of apical (but not basilar) dendrites of the OFC neurons; conversely, a retraction in BLA dendrites was observed. None of these behavioral and morphological changes were observed in MAO-A KO mice.
Conclusions:
These findings suggest that acute stress induces anxiety-like responses by affecting rapid dendritic remodeling in the pyramidal cells of OFC and BLA; furthermore, our data show that MAO-A and monoamine metabolism are required for these phenomena
Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice
Monoamine oxidase (MAO) A, the major enzyme catalyzing the oxidative degradation of serotonin (5-hydroxytryptamine, 5-HT), plays a key role in emotional regulation. In humans and mice, MAO-A deficiency results in high 5-HT levels, antisocial, aggressive, and perseverative behaviors. We previously showed that the elevation in brain 5-HT levels in MAO-A knockout (KO) mice is particularly marked during the first two weeks of postnatal life. Building on this finding, we hypothesized that the reduction of 5-HT levels during these early stages may lead to enduring attenuations of the aggression and other behavioral aberrances observed in MAO-A KO mice. To test this possibility, MAO-A KO mice were treated with daily injections of a 5-HT synthesis blocker, the tryptophan hydroxylase inhibitor p-chloro-phenylalanine (pCPA, 300 mg/kg/day, IP), from postnatal day 1 through 7. As expected, this regimen significantly reduced 5-HT forebrain levels in MAO-A KO pups. These neurochemical changes persisted throughout adulthood, and resulted in significant reductions in marble-burying behavior, as well as increases in spontaneous alternations within a T-maze. Conversely, pCPA-treated MAO-A KO mice did not exhibit significant changes in anxiety-like behaviors in a novel open-field and elevated plus-maze; furthermore, this regimen did not modify their social deficits, aggressive behaviors and impairments in tactile sensitivity. Treatment with pCPA from postnatal day 8 through 14 elicited similar, yet milder, behavioral effects on marble-burying behavior. These results suggest that early developmental enhancements in 5-HT levels have long-term effects on the modulation of behavioral flexibility associated with MAO-A deficiency
The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake
The termination of serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is regulated by its uptake by the 5-HT transporter (5-HTT), as well as its degradation by monoamine oxidase (MAO)-A. MAO-A deficiency results in a wide set of behavioral alterations, including perseverative behaviors and social deficits. These anomalies are likely related to 5-HTergic homeostatic imbalances; however, the role of 5-HTT in these abnormalities remains unclear. To ascertain the role of 5-HTT in the behavioral anomalies associated to MAO-A deficiency, we tested the behavioral effects of its blocker fluoxetine on perseverative, social and aggressive behaviors in transgenic animals with hypomorphic or null-allele MAO-A mutations. Acute treatment with 5-HTT blocker fluoxetine (10 mg/kg, i.p.) reduced aggressive behavior in MAO-A knockout (KO) mice and social deficits in hypomorphic MAO-ANeo mice. Furthermore, this treatment also reduced perseverative responses (including marble burying and water mist-induced grooming) in both MAO-A mutant genotypes. Both MAO-A mutant lines displayed significant reductions in 5-HTT expression across the prefrontal cortex, amygdala and striatum, as quantified by immunohistochemical detection; however, the down-regulation of 5-HTT in MAO-ANeo mice was more pervasive and widespread than in their KO counterparts, possibly indicating a greater ability of the hypomorphic line to enact compensatory mechanisms with respect to 5-HT homeostasis. Collectively, these findings suggest that the behavioral deficits associated with low MAO-A activity may reflect developmental alterations of 5-HTT within 5-HTergic neurons. Furthermore, the translational implications of our results highlight 5-HT reuptake inhibition as an interesting approach for the control of aggressive outbursts in MAO-A deficient individuals
Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin
This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8920271&fileId=S1461145712000909Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5′-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X4 receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X4 receptor in behavioural organization remains poorly investigated. To study the effects of P2X4 activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5–10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X4 knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X4 receptors may play a role in the regulation of sensorimotor gatin
Monoamine oxidase A and A/B knockout mice display autistic-like features
This is the published version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8876069&fileId=S1461145712000715Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOA deficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problem