14 research outputs found

    Correction of self-illumination for pressure and temperature sensitive paints

    No full text
    The present work reports self-illumination correction procedure and results of its experimental testing on a simple model. In the procedure reflectivity value is assessed directly from the set of model images captured at wind-off conditions with different reflecting surfaces covered or removed. The paper covers the theoretical part of the problem and describes exact implementation of a processing sequence, which included image mapping on a 3-D surface, building a mesh of surface elements, evaluation of radiative exchange between elements and calculation of the corrected brightness map

    Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    No full text
    The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS) and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed

    Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    No full text
    The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS) and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed

    The Influence of Surfactants, Dynamic and Thermal Factors on Liquid Convection after a Droplet Fall on Another Drop

    No full text
    The regularities of the processes and characteristics of convection in a sessile drop on a hot wall after the second drop fall are investigated experimentally. The movement of a particle on a drop surface under the action of capillary force and liquid convection is considered. The particle motion is realized by a complex curvilinear trajectory. The fall of droplet with and without surfactant additives is considered. Estimates of the influence of the thermal factor (thermocapillary forces) and the dynamic factor (inertia forces) on convection are given. The scientific novelty of the work is the investigation of the simultaneous influence of several factors that is carried out for the first time. It is shown that in the presence of a temperature jump for the time of about 0.01–0.1 s thermocapillary convection leads to a 7–8 times increase in the mass transfer rate in drop. The relative influence of inertial forces is found to be no more than 5%. The fall of drops with surfactant additives (water + surfactant) reduces the velocity jump inside the sessile drop 2–4 times, compared with the water drop without surfactant. Thermocapillary convection leads to the formation of a stable vortex in the drop. The dynamic factor and surfactant additive lead to the vortex breakdown into many small vortices, which results in the suppression of convection. The obtained results are of great scientific and practical importance for heat transfer enhancement and for the control of heating and evaporation rates

    Study of Deformation and Breakup of Submillimeter Droplets’ Spray in a Supersonic Nozzle Flow

    No full text
    The problem of secondary atomization of droplets is crucial for many applications. In high-speed flows, fine atomization usually takes place, and the breakup of small droplets determines the final products of atomization. An experimental study of deformation and breakup of 15–60 µm size droplets in an accelerated flow inside a converging–diverging nozzle is considered in the paper. Particle image velocimetry and shadow photography were employed in the experiments. Results of gas and liquid phase flow measurements and visualization are presented and analyzed, including gas and droplets’ velocity, shape and size distributions of droplets. Weber numbers for droplets’ breakup are reported. For those small droplets at low Weber numbers, the presence of well-known droplets’ breakup morphology is confirmed, and rare “pulling” breakup mode is detected and qualitatively described. For the “pulling” breakup mode, a consideration, explaining its development in smaller droplets through shear stress effect, is provided

    Planar laser-induced fluorescence measurement of the angular pattern of the cone-shaped spray

    No full text
    In the present work, a PLIF-based approach for a large cone-shaped spray patternation ispresented and experimental results of its application are discussed. The patternation approach is based on simple time-averaged PLIF imaging. Special attention is paid to the image and data processing in order to simplify a patternation results interpretation. Experimental testing was performed on a water spray, formed by centrifugal nozzle at atmospheric ambient pressure. Circumferential relative concentration profiles in spray crosswise plane are presented in the paper and their validity is analysed

    Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    No full text
    In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas) was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF) and particle image velocimetry technique (PIV) at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE) components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper

    Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    No full text
    In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas) was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF) and particle image velocimetry technique (PIV) at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE) components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper

    Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    No full text
    The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS) and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed
    corecore