42 research outputs found

    Heritability and major gene effects on left ventricular mass in the Chinese population: a family study

    Get PDF
    BACKGROUND: Genetic components controlling for echocardiographically determined left ventricular (LV) mass are still unclear in the Chinese population. METHODS: We conducted a family study from the Chin-San community, Taiwan, and a total of 368 families, 1145 subjects, were recruited to undergo echocardiography to measure LV mass. Commingling analysis, familial correlation, and complex segregation analysis were applied to detect component distributions and the mode of inheritance. RESULTS: The two-component distribution model was the best-fitting model to describe the distribution of LV mass. The highest familial correlation coefficients were mother-son (0.379, P < .0001) and father-son (0.356, P < .0001). Genetic heritability (h(2)) of LV mass was estimated as 0.268 ± 0.061 (P < .0001); it decreased to 0.153 ± 0.052 (P = .0009) after systolic blood pressure adjustment. Major gene effects with polygenic components were the best-fitting model to explain the inheritance mode of LV mass. The estimated allele frequency of the gene was 0.089. CONCLUSION: There were significant familial correlations, heritability and a major gene effect on LV mass in the population-based families

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Collaborative and Distributed Biomedical Applications

    No full text
    corecore