38 research outputs found

    Regular use of analgesics is a risk factor for renal cell carcinoma

    Get PDF
    Phenacetin-based analgesics have been linked to the development of renal pelvis cancer and renal cell carcinoma (RCC). The relationship between non-phenacetin types of analgesics and kidney cancer is less clear, although laboratory evidence suggests that these drugs possess carcinogenic potential. A population-based case–control study involving 1204 non-Asian RCC patients aged 25–74 and an equal number of sex-, age- and race-matched neighbourhood controls was conducted in Los Angeles, California, to investigate the relationship between sustained use of analgesics and risk of RCC according to major formulation categories. Detailed information on medical and medication histories, and other lifestyle factors was collected through in-person interviews. Regular use of analgesics was a significant risk factor for RCC in both men and women (odds ratio (OR) = 1.6, 95% confidence interval (CI) = 1.4–1.9 for both sexes combined). Risks were elevated across all four major classes of analgesics (aspirin, non-steroidal anti-inflammatory agents other than aspirin, acetaminophen and phenacetin). Within each class of analgesics, there was statistically significant increasing risk with increasing level of exposure. Although there was some minor variability by major class of formulation, in general individuals in the highest exposure categories exhibited approximately 2.5-fold increase in risk relative to non- or irregular users of analgesics. Subjects who took one regular-strength (i.e. 325 mg) aspirin a day or less for cardiovascular disease prevention were not at an increased risk of RCC (OR = 0.9, 95% CI = 0.6–1.4). © 1999 Cancer Research Campaig

    Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia.

    No full text
    A multiparametric analysis to demonstrate that even brief periods of arterial clamping can initiate extensive cell loss in a rat kidney through the process of apoptosis during the 48-hour period after reperfusion was performed. Microscopic examination of rat renal tissues subject to a 5-, 30-, or 45-minute period of complete ischemia showed the presence of apoptotic bodies both within and occasionally between renal tubules, appearing as early 12 hours after reperfusion, and increasing in numbers at 24 hours. Furthermore, DNA extracted from such reperfused renal tissue demonstrated the appearance of a distinct "ladder" pattern of DNA fragments after electrophoresis in agarose gels, a phenomenon commonly associated with cells undergoing apoptosis and in contrast to the predominant smear pattern obtained after electrophoresis of DNA extracted from necrotic renal tissue. Finally, messenger RNA (mRNA) encoding sulfated glycoprotein-2, a gene product previously identified to apoptotic renal cells, was found to be highly expressed in the 30-minute arterial clamped rat kidney after 24 hours of reperfusion, but was not detectable in mRNA extracted from renal tissue after 24 hours chronic infarction. This study demonstrates that a combination of morphologic, biochemical, and molecular markers can be used to distinguish predominant modes of cell death in varying forms of tissue injury. Application of these analytical techniques to renal vascular injury has distinguished that brief periods of complete ischemia initiates a form of cell death (apoptosis) during a subsequent reperfusion phase that is drastically different from cellular necrosis induced by prolonged severe ischemia

    Apoptosis in vascular endothelial cells caused by serum deprivation, oxidative stress and transforming growth factor-?

    No full text
    Vascular endothelial cell apoptosis has previously been shown to play a role in the pathogenesis of hypertension-induced vessel deletion and damage. In the present in vitro study we analyse several possible relevant causative factors of vascular endothelial cell apoptosis, namely, serum deprivation and nutrient depletion, oxidative stress in the forms of hypoxia, hyperoxia or free radical damage, and altered levels of transforming growth factor-beta 1 (TGF-beta 1) protein. An established cell line, bovine aortic endothelial cells (BAEC), was maintained in complete growth medium (RPMI-1640 plus 15% fetal calf serum and antibiotics, abbreviated as RPMI) in 25cm(2) flasks or in 12-well plates on glass coverslips. Confluent but actively-growing cultures were treated with either hypoxia (PO2 of RPMI = 50mmHg), serum-free media (SFM), SFM plus hypoxia, hyperoxia (PO2 of RPMI = 450mmHg), hydrogen peroxide (H2O2, 1 mM) in SFM, or TGF-beta 1 protein (10ng/mL) in SFM. Appropriate control Cultures were used. BAEC were collected 48h or 72h after all treatments except for TGF-beta 1 and H2O2 treatments that were collected at 16-18h. Cell death was assessed using morphological characteristics or in situ end labeling (ISEL), cell proliferation assessed using proliferating cell nuclear antigen (PCNA), and TGF-beta 1 expression assessed using transcript levels or immunohistochemistry. All treatments significantly increased levels of apoptosis over control cultures (

    An Affective Image Positioning of Las Vegas Hotels

    No full text
    The key to a hotel\u27s positioning is to understand how it is perceived by its customers. Previous research has focused on cognitive attributes (e.g., price, service quality, amenities), yet it can be argued that customers also use their feelings to differentiate hotels. This study explores the positioning of major hotels on the Las Vegas Strip based on their affective image. By using Multi-Dimensional Scaling (MDS), twelve hotels are mapped based on the photo images. Additionally, a cluster analysis is performed to aid the interpretation of the MDS configuration. Implications of our findings for hospitality managers are discussed. © 2013 Taylor and Francis Group, LLC
    corecore