2 research outputs found

    Paleozoic to Cenozoic sedimentary bedrock geology and lithostratigraphy of Singapore

    Get PDF
    A new lithostratigraphical framework for Singapore is proposed, based on the analysis of c. 20,000 m of core recovered from 121 c. 205 m deep boreholes and augmented with 218 field localities from across Singapore. The new framework describes a succession dating from the Carboniferous to the Quaternary. New U-Pb detrital zircon dates and fossil analysis were used to constrain the ages of key sedimentary units. The oldest known sedimentary rocks in Singapore are found to be the deformed Carboniferous (Mississippian) Sajahat Formation. These are succeeded by the newly erected, Middle and Upper Triassic, marine to continental Jurong Group and Sentosa Group successions that accumulated in the southern part of the Semantan Basin. The Jurong Group comprises four formations: the Tuas Formation, the Pulau Ayer Chawan Formation, the Pandan Formation and the Boon Lay Formation. The Sentosa Group contains two formations: the Tanjong Rimau Formation and the Fort Siloso Formation. In Singapore, the depositional record during this time is related to late Permian to Triassic arc magmatism in the southern part of the forearc basin to the Sukhothai Arc. The Jurong and Sentosa groups were deformed and weakly metamorphosed during the final stages of the Late Triassic to Early Jurassic orogenic event, deformation that led to the formation of the syn-orogenic conglomerates of the Buona Vista Formation. Following this, two distinct Lower Cretaceous sedimentary successions overstepped the Jurong and Sentosa group strata, including the Kusu Formation and the Bukit Batok Formation, both deposited in the southern part of the Tembeling Basin. A series of Neogene to Quaternary formations overly the Mesozoic and Palaeozoic stratigraphy, including the Fort Canning Formation, Bedok Formation and the Kallang Group

    Deep to shallow-marine sedimentology and impact of volcanism within the Middle Triassic Palaeo-Tethyan Semantan Basin, Singapore

    Get PDF
    The Middle Triassic Pulau Ayer Chawan Formation is a predominantly deep-marine, occasionally shallow-marine sedimentary succession, deposited in the Singapore sector of the Palaeo-Tethyan Semantan Basin. The formation provides an important record of the dynamic interplay between a siliciclastic sedimentary system and the products of an adjacent active volcanic arc. It is characterised by six sub-environments, including: deep-marine turbidite fan, deep-marine background sedimentation, subaqueous debris cone, shallow-marine, volcanically-sourced turbidite fan, and hyaloclastite mound or ridge. Turbidite fan deposits preserve the input of both siliciclastic and volcaniclastic sediments from the shelf, transported into the deep-marine environment by a suite of subaqueous sediment gravity flow processes, including: turbidity currents; mixed flow types (hybrid event beds); concentrated and hyper concentrated sediment gravity flows, and debris flows. Thick heterolithic successions of debrites were likely sourced through regular collapse of an unstable shelf. The presence of hybrid event beds, encountered within the deep-marine turbidite fans, supports a slope that was out-of-grade, and may have been actively retreating towards the hinterland. Together, these factors suggest regional-scale uplift of the eastern margins of the Semantan Basin during Triassic times, most likely facilitated through volcanic activity in the adjacent Palaeo-Tethys Sukhothai Arc. Evidence for contemporaneous, arc-related magmatism includes ubiquitous volcaniclastic sedimentary rocks within formation, including pyroclastic density current deposits and perhaps more-strikingly through the hyaloclastites of the Nanyang Member. The hyaloclastites formed through quenching of magmas delivered into the deep-marine setting from a series of sub-sea vents or mounds
    corecore