12 research outputs found

    Ion Transport and Electrochemical Properties of Fluorine-Free Lithium-Ion Battery Electrolytes Derived from Biomass

    No full text
    Unlike conventional electrolytes, ionic liquid (IL)-based electrolytes offer higher thermal stability, acceptable ionic conductivity, and a higher electrochemical stability window (ESW), which are indispensable for the proper functioning of Li-ion batteries. In this study, fluorine-free electrolytes are prepared by mixing the lithium furan-2-carboxylate [Li(FuA)] salt with the tetra(n-butyl)phosphonium furan-2-carboxylate [(P4444)(FuA)] IL in different molar ratios. The anion of these electrolytes is produced from biomass and agricultural waste on a large scale and, therefore, this study is a step ahead toward the development of renewable electrolytes for batteries. The electrolytes are found to have Tonset higher than 568 K and acceptable ionic conductivities in a wide temperature range. The pulsed field gradient nuclear magnetic resonance (PFG-NMR) analysis has confirmed that the (FuA)- anion diffuses faster than the (P4444)+ cation in the neat (P4444)(FuA) IL; however, the anion diffusion becomes slower than cation diffusion by doping Li salt. The Li+ ion interacts strongly with the carboxylate functionality in the (FuA)- anion and diffuses slower than other ions over the whole studied temperature range. The interaction of the Li+ ion with the carboxylate group is also confirmed by 7Li NMR and Fourier transform infrared (FTIR) spectroscopy. The transference number of the Li+ ion is increased with increasing Li salt concentration. Linear sweep voltammetry (LSV) suggests lithium underpotential deposition and bulk reduction at temperatures above 313 K

    Temperature dependence of <sup>1</sup>H NMR chemical shifts and diffusivity of confined ethylammonium nitrate ionic liquid

    No full text
    © 2020 Elsevier Inc. Some ionic liquids (ILs) change their dynamic properties when placed in a confinement between polar surfaces (Filippov et al., Phys. Chem. Chem. Phys. 2018, 20, 6316). The diffusivities of ions and NMR relaxation times in these ILs also reversibly change under a strong static magnetic field. The mechanisms of these phenomena are not clear, but it has been suggested that they involve modified hydrogen-bonding networks formed in these ILs in the presence of polar surfaces. To obtain a better understanding of these effects, we performed temperature-dependent measurements of chemical shifts and diffusion coefficients for ethylammonium nitrate (EAN) IL in the bulk phase (IB) and confined in layers with a thickness of ~4 μm between quartz plates unexposed (I phase) and exposed (IMF phase) to a static magnetic field of 9.4 T. It was shown that the NMR chemical shift of NH3 protons of EAN in the I phase is strongly shifted upfield, ~0.0145 ppm/K, which is due to weakening of the hydrogen-bonding network of the confined EAN. Exposure to the magnetic field leads to restitution of the hydrogen-bonding (H-bonding network). The temperature dependences of diffusion coefficients follow the order D(I) > D(IB) > D(IMF) and can be described by a Vogel-Fulcher-Tammann approach with variation of the pre-exponential factor, which is determined by the strength of the H-bonding network. Confinement of EAN between plates (IB → I) is an endothermic process, while processes occurring in a magnetic field, I → IMF and IMF → I, are exothermic and endothermic, respectively

    Self-diffusion in ionic liquids with nitrate anion: Effects of confinement between glass plates and static magnetic field

    No full text
    © 2020 The Authors Alkylammonium nitrate protic ionic liquids (ILs), when placed between flat polar borosilicate glass plates, have demonstrated enhanced diffusivity and the gradual decrease of diffusivity after exposure to an external static magnetic field (Filippov et al., 2018). This phenomenon has been explained by phase transformations taking place in the ILs. In this study, we observed similar processes occurring in systems prepared with ethylammonium nitrate confined between quartz plates. A higher content of silicon oxide in the plates does not significantly alter the phenomenon previously found in the system prepared with borosilicate glass plates. For the first time, we have observed similar effects of confinement and magnetic field on the aprotic IL, 1‑ethyl‑3‑methylimidazolium nitrate. Substitution of the ethylammonium cation with a 1‑ethyl‑3‑methylimidazolium cation slows down the kinetics and increases magnitude of the processes occurring in the IL exposed to a magnetic field. We suggested that the main factor determining these effects is the presence and modification of the hydrogen-bonding network in the studied protic and aprotic ILs. The process of inverse phase transformation for the confined ethylammonium nitrate after removing the sample from the magnetic field was observed and analysed

    Hydration, self-diffusion and ionic conductivity of Li<sup>+</sup>, Na<sup>+</sup> and Cs<sup>+</sup> cations in Nafion membrane studied by NMR

    No full text
    Hydration of Nafion 117 perfluorinated sulfonic cation-exchange membrane in alkaline ion forms was investigated by high resolution 1H NMR. Hydration numbers of Li+, Na+ and Cs+ cations were 5 ± 1, 6 ± 1 and 1 ± 0.2, correspondingly for membrane equilibrated with water vapor at 98% RH. As opposed to Li+ and Na+, which form separate ion pair, Cs+ cation directly contacts with membrane sulfonate group. Cation self-diffusion coefficients were measured by pulsed field gradient NMR technique on 7Li, 23Na and 133Cs nuclei for the first time. Self-diffusion coefficients are changed in the next rows Li+ ≤ Na+ > Cs+. Self-diffusion activation energies of Li+ and Na+ cations are about 20 kJ/mol which is close to water self-diffusion activation energy in these membranes, but Cs+ self-diffusion activation energy is distinctly more (25 kJ/mol). Ionic conductivities calculated on the basis of Nernst–Einstein equation from cation self-diffusion coefficients 1.6∙10−2, 2∙10−2, 6∙10−3 S/cm for Li+, Na+, Cs+ cations, correspondingly, are closely approximating to conductivities measured by impedance spectroscopy: 1.3∙10−2, 1.1∙10−2, 2.3∙10−3 S/cm for Li+, Na+, Cs+ cations, correspondingly, but calculated values are appreciably more compared with experimental meanings

    Effect of Aromaticity in Anion on the Cation-Anion Interactions and Ionic Mobility in Fluorine-Free Ionic Liquids

    No full text
    © 2020 American Chemical Society. All rights reserved. Ionic liquids (ILs) composed of tetra(n-butyl)phosphonium [P4444]+ and tetra(n-butyl)ammonium [N4444]+ cations paired with 2-furoate [FuA]-, tetrahydo-2-furoate [HFuA]-, and thiophene-2-carboxylate [TpA]- anions are prepared to investigate the effects of electron delocalization in anion and the mutual interactions between cations and anions on their physical and electrochemical properties. The [P4444]+ cations-based ILs are found to be liquids, while the [N4444]+ cations-based ILs are semi-solids at room temperature. Thermogravimetric analysis revealed higher decomposition temperatures and differential scanning calorimetry analysis showed lower glass transition temperatures for phosphonium-based ILs than the ammonium-based counterparts. The ILs are arranged in the decreasing order of their ionic conductivities as [P4444][HFuA] (0.069 mS cm-1) > [P4444][FuA] (0.032 mS cm-1) > [P4444][TpA] (0.028 mS cm-1) at 20 °C. The oxidative limit of the ILs followed the sequence of [FuA]-> [TpA]-> [HFuA]-, as measured by linear sweep voltammetry. This order can be attributed to the electrons' delocalization in [FuA]- and in [TpA]- aromatic anions, which has enhanced the oxidative limit potentials and the overall electrochemical stabilities

    Effect of rotating magnetic field on the diffusivity of ethylammonium nitrate ionic liquid confined between micrometer-spaced glass plates

    No full text
    We studied changes in the diffusion coefficients in layers of EAN confined between glass plates, placed in a strong magnetic field with a magnetic flux density B0, and rotated around the axis directed along and normal to B0. Under the rotational conditions along B0, the diffusion coefficient decreases with time after placement in the magnetic field at the same rate as for a static sample, observed previously (Filippov and Antzutkin, Phys. Chem. Chem. Phys. 2018. 20. 6316). However, when the EAN layers are rotating around the axis perpendicular to B0, the duration of exposure to the magnetic field does not affect the diffusion coefficient until the rotation stops. On the other hand, the diffusivity after extended exposure to a static magnetic field increases as the sample starts to rotate around the axis perpendicular to B0. The observed effects are due to either the periodic change in the orientation of the thin surface layers of EAN or inhomogeneity of B0 in the sample due to the B0 fluctuation

    NMR chemical shifts of carbon atoms and characteristic shift ranges in the oil sample

    No full text
    Application of high resolution 13C nuclear magnetic resonance (NMR) spectroscopy to characterize crude oil was demonstrated. The chemical shifts of 13C NMR functional groups that determine the composition of the oil sample were determined. Molar fractions of primary, secondary, quaternary, tertiary, aromatic groups, aromatic factor and average hydrocarbon chain length of aliphatic hydrocarbons of the oil sample according to 13C NMR spectra were determined. Detailed description of the 13C NMR spectra of the oil sample using a single consideration of three NMR spectra: 13C, 13C Attached Proton Test (APT), 13C with Gated Decoupling (GD) was performed. The different contribution of the studied oil sample in the aliphatic (10–75 ppm) and aromatic (115–165 ppm) areas of the 13C NMR spectra was determined. The presence of all major hydrocarbon components in the studied oil sample was established on the quantitative level, the aromaticity factor and the mean length of the hydrocarbon chain were evaluated. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined. In this work we demonstrate that the attached proton test and gated decoupling 13C NMR spectroscopy can afford all information to complete the chemical shift assignment of an oil sample, especially for determination of long range 1H–13C coupling constants and 13C multiplicity

    Structural and ion dynamics in fluorine-free oligoether carboxylate ionic liquid-based electrolytes

    No full text
    © 2020 American Chemical Society Here, we investigate the physicochemical and electrochemical properties of fluorine-free ionic liquid (IL)-based electrolytes with two different cations, tetrabutylphosphonium, (P4,4,4,4)+, and tetrabutylammonium, (N4,4,4,4)+, coupled to a new anion, 2-[2-(2-methoxyethoxy)ethoxy]acetate anion (MEEA)−, for both neat and (P4,4,4,4)(MEEA) also doped with 10−40 mol % of Li(MEEA). We find relatively weaker cation−anion interactions in (P4,4,4,4)(MEEA) than in (N4,4,4,4)(MEEA), and for both ILs, the structural flexibility of the oligoether functionality in the anion results in low glass transition temperatures, also for the electrolytes made. The pulsed field gradient nuclear magnetic resonance (PFG NMR) data suggest faster diffusion of the (MEEA)− anion than (P4,4,4,4)+ cation in the neat IL, but the addition of a Li salt results in slightly lower mobility of the former than the latter and lower ionic conductivity. This agrees with the combined 7Li NMR and attenuated total reflection−Fourier transform infrared (ATR−FTIR) spectroscopy data, which unambiguously reveal preferential interactions between the lithium cations and the carboxylate groups of the IL anions, which also increased as a function of the lithium salt concentration. In total, these systems provide a stepping stone for further design of fluorine-free and low glass transition temperature IL-based electrolytes and also stress how crucial it is to control the strength of ion−ion interactions

    3,28-Diacetoxylup-20(29)-ene-30-oic Acid and Its ω-Bromoalkyl Esters

    No full text
    © 2020, Pleiades Publishing, Ltd. Abstract: A convenient procedure has been developed for the synthesis of3β,28-diacetoxylup-20(29)-en-30-oic acid via oxidation of 3β,28-di-O-acetylbetulin with selenium dioxide in aqueousethanol on heating, followed by oxidation of 3β,28-diacetoxylup-20(29)-en-30-althus formed with sodium chlorite in tert-butyl alcohol. The alkylation of3β,28-diacetoxylup-20(29)-en-30-oic acid with 1,3-dibrompropane and1,5-dibromopentane in boiling acetonitrile in the presence of potassiumcarbonate afforded the corresponding ω-bromoalkyl esters in high yields

    Synthesis and antitumor activity of novel pyridoxine-based structural analogs of saccharumoside-B

    No full text
    A series of 11 new pyridoxine-based structural analogs of saccharumoside-B were obtained using original synthetic approach. Antitumor activity of these compounds against nine human tumor cell lines (MCF-7, MDA-MB-231, A-498, SNB-19, M-14, NCI-H322M, HCT-115, HCT-116, and PC-3) was studied, and cytotoxic activity to three normal (HEK-293, Chang Liver, and MSC) cell lines was evaluated. Among the synthesized compounds, 12d, 12e, 13b, 13d, 13e, and 14 exhibited the highest antitumor activity, comparable to that of camptothecin and doxorubicin, but with significantly increased selectivity toward tumor cells. [Figure not available: see fulltext.
    corecore