435 research outputs found

    Thermal Evolution of a Pulsating Neutron Star

    Full text link
    We have derived a set of equations to describe the thermal evolution of a neutron star which undergoes small-amplitude radial pulsations. We have taken into account, in the frame of the General Theory of Relativity, the pulsation damping due to the bulk and shear viscosity and the accompanying heating of the star. The neutrino emission of a pulsating non-superfluid star and its heating due to the bulk viscosity are calculated assuming that both processes are determined by the non-equilibrium modified Urca process. Analytical and numerical solutions to the set of equations of the stellar evolution are obtained for linear and strongly non-linear deviations from beta-equilibrium. It is shown that a pulsating star may be heated to very high temperatures, while the pulsations damp very slowly with time (a power law damping for 100-1000 years), as long as the damping is determined by the bulk viscosity. The contribution of the shear viscosity to the damping becomes important in a rather cool star with a low pulsation energy.Comment: 10 pages, 3 figures, an important reference to the paper by Finzi & Wolf (1968) is added; analytical consideration of the problem (Section 5) is essentially extende

    The Cooling Neutron Star in 3C 58

    Full text link
    The upper limit of the effective surface temperature of the neutron star (NS) PSR J0205+6449 in the supernova remnant 3C 58 obtained recently by Slane et al. (2002) is analyzed using a modern theory of NS cooling (Kaminker et al. 2002). The observational limit can be explained by cooling of a superfluid NS with the core composed of neutrons, protons and electrons, where direct Urca process is forbidden. However, combined with the data on the surface temperatures of other isolated NSs, it gives evidence (emphasized by Slane et al.) that direct Urca process is open in the inner cores of massive NSs. This evidence turns out to be less stringent than the evidence provided by the well known observations of Vela and Geminga.Comment: 3 pages, 2 figures, AA Letters (submitted

    Dynamical friction force exerted on spherical bodies

    Get PDF
    We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.Comment: 5 pages, 2 figures, accepted in MNRA

    Gamma-Ray Burst Phenomenon as Collapse of QED Magnetized Vacuum Bubble: Analogy with Sonoluminescence

    Full text link
    We consider the phenomenon of a gamma-ray burst as a nonlinear collapse of a magnetic cavity surrounding a neutron star with very strong magnetic field B = 10^15 - 10^16 G due to the process of the bubble shape instability in a resonant MHD field of the accreting plasma. The QED effect of vacuum polarizability by the strong magnetic field is taken into account. We develop an analogy with the phenomenon of sonoluminescence (SL) when the gas bubble is located in the surrounding liquid with a driven sound intensity. We show that this analogy between GRB and SL phenomena really exists.Comment: 14 pages, submitted to Natur

    Neutrino Emission from Neutron Stars

    Get PDF
    We review the main neutrino emission mechanisms in neutron star crusts and cores. Among them are the well-known reactions such as the electron-positron annihilation, plasmon decay, neutrino bremsstrahlung of electrons colliding with atomic nuclei in the crust, as well as the Urca processes and neutrino bremsstrahlung in nucleon-nucleon collisions in the core. We emphasize recent theoretical achievements, for instance, band structure effects in neutrino emission due to scattering of electrons in Coulomb crystals of atomic nuclei. We consider the standard composition of matter (neutrons, protons, electrons, muons, hyperons) in the core, and also the case of exotic constituents such as the pion or kaon condensates and quark matter. We discuss the reduction of the neutrino emissivities by nucleon superfluidity, as well as the specific neutrino emission produced by Cooper pairing of the superfluid particles. We also analyze the effects of strong magnetic fields on some reactions, such as the direct Urca process and the neutrino synchrotron emission of electrons. The results are presented in the form convenient for practical use. We illustrate the effects of various neutrino reactions on the cooling of neutron stars. In particular, the neutrino emission in the crust is critical in setting the initial thermal relaxation between the core and the crust. Finally, we discuss the prospects of exploring the properties of supernuclear matter by confronting cooling simulations with observations of the thermal radiation from isolated neutron stars.Comment: review, 165 pages, Physics Reports, 2001 in pres

    Cooling of Akmal-Pandharipande-Ravenhall neutron star models

    Full text link
    We study the cooling of superfluid neutron stars whose cores consist of nucleon matter with the Akmal-Pandharipande-Ravenhall equation of state. This equation of state opens the powerful direct Urca process of neutrino emission in the interior of most massive neutron stars. Extending our previous studies (Gusakov et al. 2004a, Kaminker et al. 2005), we employ phenomenological density-dependent critical temperatures T_{cp}(\rho) of strong singlet-state proton pairing (with the maximum T_{cp}^{max} \sim 7e9 K in the outer stellar core) and T_{cnt}(\rho) of moderate triplet-state neutron pairing (with the maximum T_{cnt}^{max} \sim 6e8 K in the inner core). Choosing properly the position of T_{cnt}^{max} we can obtain a representative class of massive neutron stars whose cooling is intermediate between the cooling enhanced by the neutrino emission due to Cooper pairing of neutrons in the absence of the direct Urca process and the very fast cooling provided by the direct Urca process non-suppressed by superfluidity.Comment: 9 pages, 6 figures; accepted for publication in MNRA

    Three Types of Cooling Superfluid Neutron Stars: Theory and Observations

    Get PDF
    Cooling of neutron stars (NSs) with the cores composed of neutrons, protons, and electrons is simulated assuming 1^1S0_0 pairing of neutrons in the NS crust, and also 1^1S0_0 pairing of protons and weak 3^3P2_2 pairing of neutrons in the NS core, and using realistic density profiles of the superfluid critical temperatures Tc(ρ)T_{\rm c}(\rho). The theoretical cooling models of isolated middle-aged NSs can be divided into three main types. (I) {\it Low-mass}, {\it slowly cooling} NSs where the direct Urca process of neutrino emission is either forbidden or almost fully suppressed by the proton superfluidity. (II) {\it Medium-mass} NSs which show {\it moderate} cooling via the direct Urca process suppressed by the proton superfluidity. (III) {\it Massive} NSs which show {\it fast} cooling via the direct Urca process weakly suppressed by superfluidity. Confronting the theory with observations we treat RX J0822--43, PSR 1055--52 and RX J1856--3754 as slowly cooling NSs. To explain these sufficiently warm sources we need a density profile Tc(ρ)T_{\rm c}(\rho) in the crust with a rather high and flat maximum and sharp wings. We treat 1E 1207--52, RX J0002+62, PSR 0656+14, Vela, and Geminga as moderately cooling NSs. We can determine their masses for a given model of proton superfluidity, Tcp(ρ)T_{\rm cp}(\rho), and the equation of state in the NS core. No rapidly cooling NS has been observed so far.Comment: 12 pages, 10 figures, Astron. Astrophys., submitte
    corecore