263 research outputs found
The flagellar sensilla of the digger wasp Liris niger (Hymenoptera: Sphecidae)
Im Vergleich zu der Vielzahl von Einzeluntersuchungen liegen nur für wenige Insektenarten (z.B. Manduca sexta: SHIELDS & HILDEBRANDT 1999 a, b; Drosophila: SHANBHAG et al. 1999, 2000) detaillierte Befunde zur Feinstruktur, Zahl und Topographie antennaler Sensillen vor. Die jetzt an Liris niger gewonnenen Daten bilden, zusammen mit solchen früherer Untersuchungen (GNATZY 1996, 2001; ANTON & GNATZY 1998; GNATZY & FERBER 1999) die Basis für derzeit laufende immuncytochemische und elektrophysiologische Arbeiten insbesondere am olfaktorischen System dieser solitären Grabwespenart. Dabei gilt unser Interesse dem ausgeprägten Sexualdimorphismus im antennalen Sensilleninventar, wie er im Verlauf dieser Untersuchungen nachgewiesen werden konnte.As in other parasitoid hymenoptera, the antennae of females of Liris niger play a key role in prey recognition. Furthermore the antennae are important for intraspecific communication. Using scanning and transmission electron microscopy both sexes of L. niger were examined. The antennae show sexual dimorphism in structure: 10 flagellomeres in females, 11 in males. Both sexes bear eight morphological types of sensilla: three types of s. trichodea, one type of s. basiconicum, placodeum, ampullaceum, coeloconicum and coelocapitulum, respectively. The number and distribution of the antennal sensilla is remarkably different in both sexes. Typical arrangement of all sensilla types is existent on flagellomeres 4 to 9 in females and 4 to 10 in males, respectively. On the dorsal surface of such a flagellomer in females, only s. basiconica, s. trichodea type 1 (mechanosensory) and s. trichodea type 2 (gustatory) are located; the remainning surface is dominated by s. placodea (olfactory). At the border between s. placodea and s. basiconica / s. trichodea type 2 a group of s. ampullacea can be found. Somewhat more ventrally on the inner sidewall of the flagellomeres, a field of s. coelocapitula is located. On the ventral surface approximately in the middle of the flagellomer (4th to 9th segment) a marked-off field of s. trichodea type 3 (olfactory) exists. The number of sensilla within this field increases from the 4th to the 9th segment (they are absent on flagellomer 1 to 3 and 10). About 3-5 s. coeloconica can be found on the ventral region of flagellomeres 2-10. The most proximal flagellomer displays only a small number of s. coeloconica. In males the dorsal surface of the flagellomeres (2 to 11) exhibits exclusively about 18.000 s. trichodea type 3 (olfactory). In this region also trichoms are absent. Subsequent to these s. trichodea type 3, s. placodea are expressed on the sidewalls of the flagellomeres together with s. ampullacea, s. coelocapitula, and s. coeloconica. The ventral surface is dominated by s. basiconica and s. trichodea type 2
Auswirkungen der intraoperativen Gabe von Dexamethason zur PONV-Prophylaxe auf den Blutzucker- und Cortisolspiegel bei normalgewichtigen und adipösen Kindern
Background: The incidence of postoperative nausea and vomiting (PONV) can be reduced by dexamethasone. Single dose administration may cause elevated blood glucose levels in obese adults. No data are available for children.
Objective: The aim was to evaluate perioperative blood glucose changes related to body weight in children who received dexamethasone.
Methods: This prospective observational study included 62 children. All patients received total intravenous anesthesia and a single dose of dexamethasone (0.15mg/kg, maximum 8mg). Blood glucose levels were measured up to 6 hours. Standard deviation scores (SDS) were calculated using age- and gender-specific BMI percentiles, p<0.05.
Results: 62 children (11.5±2.9years, median SDS 0.43, 29% overweight/obese) were included. Blood glucose level increased from 5.52±0.52 to 6.74±0.84mmol/l 6h after dexamethasone without correlation to the BMI-SDS.
Conclusions: This study shows an increase of perioperative blood glucose (normoglycemic ranges) after single dose of dexamethasone but no BMI-dependent effect in children. Therefore, low-dose dexamethasone may be used in obese children for PONV prophylaxis
Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated
Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to
the image of an approaching object. These neurons are called the lobula giant movement
detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the
development of an LGMD model for use as an artificial collision detector in robotic applications.
To date, robots have been equipped with only a single, central artificial LGMD sensor, and this
triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly,
for a robot to behave autonomously, it must react differently to stimuli approaching from
different directions. In this study, we implement a bilateral pair of LGMD models in Khepera
robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD
models using methodologies inspired by research on escape direction control in cockroaches.
Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration,
the khepera robots could escape an approaching threat in real time and with a similar
distribution of escape directions as real locusts. We also found that by optimising these
algorithms, we could use them to integrate the left and right DCMD responses of real jumping
locusts offline and reproduce the actual escape directions that the locusts took in a particular
trial. Our results significantly advance the development of an artificial collision detection and
evasion system based on the locust LGMD by allowing it reactive control over robot behaviour.
The success of this approach may also indicate some important areas to be pursued in future
biological research
Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus
Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system.We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions.The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense
The Cercal Organ May Provide Singing Tettigoniids a Backup Sensory System for the Detection of Eavesdropping Bats
Conspicuous signals, such as the calling songs of tettigoniids, are intended to attract mates but may also unintentionally attract predators. Among them bats that listen to prey-generated sounds constitute a predation pressure for many acoustically communicating insects as well as frogs. As an adaptation to protect against bat predation many insect species evolved auditory sensitivity to bat-emitted echolocation signals. Recently, the European mouse-eared bat species Myotis myotis and M. blythii oxygnathus were found to eavesdrop on calling songs of the tettigoniid Tettigonia cantans. These gleaning bats emit rather faint echolocation signals when approaching prey and singing insects may have difficulty detecting acoustic predator-related signals. The aim of this study was to determine (1) if loud self-generated sound produced by European tettigoniids impairs the detection of pulsed ultrasound and (2) if wind-sensors on the cercal organ function as a sensory backup system for bat detection in tettigoniids. We addressed these questions by combining a behavioral approach to study the response of two European tettigoniid species to pulsed ultrasound, together with an electrophysiological approach to record the activity of wind-sensitive interneurons during real attacks of the European mouse-eared bat species Myotis myotis. Results showed that singing T. cantans males did not respond to sequences of ultrasound pulses, whereas singing T. viridissima did respond with predominantly brief song pauses when ultrasound pulses fell into silent intervals or were coincident with the production of soft hemi-syllables. This result, however, strongly depended on ambient temperature with a lower probability for song interruption observable at 21°C compared to 28°C. Using extracellular recordings, dorsal giant interneurons of tettigoniids were shown to fire regular bursts in response to attacking bats. Between the first response of wind-sensitive interneurons and contact, a mean time lag of 860 ms was found. This time interval corresponds to a bat-to-prey distance of ca. 72 cm. This result demonstrates the efficiency of the cercal system of tettigoniids in detecting attacking bats and suggests this sensory system to be particularly valuable for singing insects that are targeted by eavesdropping bats
The neurobiology of Etruscan shrew active touch
The Etruscan shrew, Suncus etruscus, is not only the smallest terrestrial mammal, but also one of the fastest and most tactile hunters described to date. The shrew's skeletal muscle consists entirely of fast-twitch types and lacks slow fibres. Etruscan shrews detect, overwhelm, and kill insect prey in large numbers in darkness. The cricket prey is exquisitely mechanosensitive and fast-moving, and is as big as the shrew itself. Experiments with prey replica show that shape cues are both necessary and sufficient for evoking attacks. Shrew attacks are whisker guided by motion- and size-invariant Gestalt-like prey representations. Shrews often attack their prey prior to any signs of evasive manoeuvres. Shrews whisk at frequencies of approximately 14 Hz and can react with latencies as short as 25–30 ms to prey movement. The speed of attacks suggests that shrews identify and classify prey with a single touch. Large parts of the shrew's brain respond to vibrissal touch, which is represented in at least four cortical areas comprising collectively about a third of the cortical volume. Etruscan shrews can enter a torpid state and reduce their body temperature; we observed that cortical response latencies become two to three times longer when body temperature drops from 36°C to 24°C, suggesting that endothermy contributes to the animal's high-speed sensorimotor performance. We argue that small size, high-speed behaviour and extreme dependence on touch are not coincidental, but reflect an evolutionary strategy, in which the metabolic costs of small body size are outweighed by the advantages of being a short-range high-speed touch and kill predator
Morphological study of the antennal sensilla in Gerromorpha (Insecta: Hemiptera: Heteroptera)
The external morphology and distribution of the antennal sensilla of 21 species from five families of semiaquatic bugs (Gerromorpha) were examined using scanning electron microscopy. Nine main types were distinguished based on their morphological structure: sensilla trichoidea, sensilla chaetica, sensilla leaflike, sensilla campaniformia, sensilla coeloconica, sensilla ampullacea, sensilla basiconica, sensilla placoidea and sensilla bell-mouthed. The specific morphological structure of one type of sensilla (bell-mouthed sensilla) was observed only in Aquarius paludum. Several subtypes of sensilla are described, differentiated by number, location and type of sensillum characteristic for each examined taxon. The present study provides new data about the morphology and distribution of the antennal sensilla in Gerromorpha
Computational Model of the Insect Pheromone Transduction Cascade
A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed
- …