4 research outputs found

    Correlation between recombination junctions and RNA secondary structure elements in poliovirus Sabin strains

    No full text
    In order to test the hypothesis that RNA structural elements promote the distribution of certain types of recombination junctions in each one of the 2C and 3D poliovirus genomic regions (Sabin 3/Sabin 2 or Sabin 1 in 2C and Sabin 2/Sabin 1 or Sabin 3 in 3D), we searched in 2C and 3D regions of reference Sabin strains for high probability RNA structural elements that could promote recombination. Recombination junctions that were identified in clinical strains of this study, as well as in clinical strains of previous studies, were superimposed on RNA secondary structure models of 2C and 3D genomic regions. Furthermore, we created an in vitro model, based on double infection of cell-culture with two poliovirus strains, for the production and identification of recombinant Sabin strains in 2C and 3D regions. Our intention was to compare the results that refer to the correlation of recombination junctions and RNA secondary structures in 2C and 3D regions of clinical strains, with the respective results of the in vitro model. Most of the recombination junctions of the clinical strains were correlated with RNA secondary structure elements, which were identical between recombining Sabin strains, and also presented high predictive value. In consensus were, the respective results originated from the in vitro model. We propose that the distribution of specific types of recombination junctions in certain regions of Sabin strains is not fortuitous and is correlated with RNA secondary structure elements identical to both recombination partners. Furthermore, results of this study highlight an important role for the stem region of the RNA structure elements in promoting recombination

    Recombination among human non-polio enteroviruses: implications for epidemiology and evolution

    No full text
    Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter-and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human nonpolio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution
    corecore