147 research outputs found

    Relative space-time asymmetries in pion and nucleon production in non-central nucleus-nucleus collisions at high energies

    Full text link
    We propose to use the ratio of the pion-proton correlation functions evaluated under different conditions to study the relative space-time asymmetries in pion and proton emission (pion and nucleon source relative shifts) in high energy heavy ion collision. We address the question of the non-central collisions, where the sources can be shifted spatially both in the longitudinal and in the transverse directions in the reaction plane. We use the RQMD event generator to illustrate the effect and the technique.Comment: RevTex, 4 pages, 3 figures included as eps file

    Towards the solution of the CP/CAC_{P}/C_{A} anomaly in shell-model calculations of muon capture

    Get PDF
    Recently many authors have performed shell-model calculations of nuclear matrix elements determining the rates of the ordinary muon capture in light nuclei. These calculations have employed well-tested effective interactions in large scale shell-model studies. For one of the nuclei of interest, namely 28^{28}Si, there exists recent experimental data which can be used to deduce the value of the ratio CP/CAC_{P}/C_{A} by using the calculated matrix elements. Surprisingly enough, all the abovementioned shell-model results suggest a very small value (0\simeq 0) for CP/CAC_{P}/C_{A}, quite far from the PCAC prediction and recent data on muon capture in hydrogen. We show that this rather disturbing anomaly is solved by employing effective transition operators. This finding is also very important in studies of the scalar coupling of the weak charged current of leptons and hadrons.Comment: Revtex, 6 pages, 2 figs include

    Elastic Pion Scattering on the Deuteron in a Multiple Scattering Model

    Get PDF
    Pion elastic scattering on deuterium is studied in the KMT multiple scattering approach developed in momentum space. Using a Paris wave function and the same methods and approximations as commonly used in pion scattering on heavier nuclei excellent agreement with differential cross section data is obtained for a wide range of pion energies. Only for Tπ>250T_{\pi}>250 MeV and very backward angles, discrepancies appear that are reminiscent of disagreements in pion scattering on 3^3He, 3^3H, and 4^4He. At low energies the second order corrections have been included. Polarization observables are studied in detail. While tensor analyzing powers are well reproduced, vector analyzing powers exhibit dramatic discrepancies.Comment: 25 pages LATEX and 9 postscript figures in a self-extracting uufile archiv

    Pion interaction with the trinucleon up to the eta production threshold

    Full text link
    Pion elastic, charge exchange scattering and induced eta production on the trinucleon systems are investigated in a coupled-channels approach in momentum space with Fadeev wave functions. The channel πNηN\pi N \rightarrow \eta N is included using an isobar model with S-, P-, and D-wave resonances. While the coherent reactions like 3^3He(π,π)3\pi,\pi)^3He can be reasonably well reproduced up to TπT_{\pi}=500 MeV, large discrepancies appear for the incoherent processes, 3^3He(π,π0)3\pi^-,\pi^0)^3H and 3^3He(π,η)3\pi^-,\eta)^3H at backward angles and energies above Δ\Delta-resonance. In the forward direction the (π,η)(\pi,\eta) calculations underestimate the experimental measurements very close to threshold but agreement with the data improves with increasing pion energy. Predictions are made for the asymmetries of the various reactions on polarized 3^3He.Comment: 40 pages, 12 figures (available from the authors), Mainz preprint MKPH-T-92-1

    Weak Transitions in A=6 and 7 Nuclei

    Get PDF
    The 6^6He beta decay and 7^7Be electron capture processes are studied using variational Monte Carlo wave functions, derived from a realistic Hamiltonian consisting of the Argonne v18v_{18} two-nucleon and Urbana-IX three-nucleon interactions. The model for the nuclear weak axial current includes one- and two-body operators with the strength of the leading two-body term--associated with Δ\Delta-isobar excitation of the nucleon--adjusted to reproduce the Gamow-Teller matrix element in tritium β\beta-decay. The measured half-life of 6^6. He is under-predicted by theory by \simeq 8%, while that of 7^7Be for decay into the ground and first excited states of 7^7Li is over-predicted by \simeq 9%. However, the experimentally known branching ratio for these latter processes is in good agreement with the calculated value. Two-body axial current contributions lead to a \simeq 1.7% (4.4%) increase in the value of the Gamow-Teller matrix element of 6^6He (7^7Be), obtained with one-body currents only, and slightly worsen (appreciably improve) the agreement between the calculated and measured half-life. Corrections due to retardation effects associated with the finite lepton momentum transfers involved in the decays, as well as contributions of suppressed transitions induced by the weak vector charge and axial current operators, have also been calculated and found to be negligible.Comment: 23 pages 8 tables. submitted to Phys. Rev.

    Microscopic Calculation of Total Ordinary Muon Capture Rates for Medium - Weight and Heavy Nuclei

    Full text link
    Total Ordinary Muon Capture (OMC) rates are calculated on the basis of the Quasiparticle Random Phase Approximation for several spherical nuclei from 90^Zr to 208^Pb. It is shown that total OMC rates calculated with the free value of the axial-vector coupling constant g_A agree well with the experimental data for medium-size nuclei and exceed considerably the experimental rates for heavy nuclei. The sensitivity of theoretical OMC rates to the nuclear residual interactions is discussed.Comment: 27 pages and 3 figure

    Quasifree Pion Electroproduction from Nuclei in the Δ\Delta Region

    Full text link
    We present calculations of the reaction A(e,eπN)BA(e,e^\prime \pi N)B in the distorted wave impulse approximation. The reaction allows for the study of the production process in the nuclear medium without being obscured by the details of nuclear transition densities. First, a pion electroproduction operator suitable for nuclear calculations is obtained by extending the Blomqvist-Laget photoproduction operator to the virtual photon case. The operator is gauge invariant, unitary, reference frame independent, and describes the existing data reasonably well. Then it is applied in nuclei to predict nuclear cross sections under a variety of kinematic arrangements. Issues such as the effects of gauge-fixing, the interference of the Δ\Delta resonance with the background, sensitivities to the quadrupole component of the Δ\Delta excitation and to the electromagnetic form factors, the role of final-state interactions, are studied in detail. Methods on how to experimentally separate the various pieces in the coincidence cross section are suggested. Finally, the model is compared to a recent SLAC experiment.Comment: 27 pages in REVTEX, plus 22 PS figures embedded using psfig.sty (included), uuencode

    Polarized photons in radiative muon capture

    Get PDF
    We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant gPg_P. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for gPg_P and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.Comment: 10 pages, 6 figure

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Finite-size effect on two-particle production in continuous and discrete spectrum

    Full text link
    The formalism allowing one to account for the effect of a finite space-time extent of particle production region is given. Its applications to the lifetime measurement of hadronic atoms produced by a high-energy beam in a thin target, as well as to the femtoscopy techniques widely used to measure space-time characteristics of the production processes, are discussed. Particularly, it is found that the neglect of the finite-size effect on the pionium lifetime measurement in the experiment DIRAC at CERN could lead to the lifetime overestimation comparable with the 10% statistical error. The theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of non-equal emission times in the pair center-of-mass system, the space-time coherence and the residual charge are shown to be negligible.Comment: LaTeX, 77 pages including 5 tables and 18 figures. Somewhat extended version to be published in Phys. El. Part. At. Nuc
    corecore