176 research outputs found
Resonant cavity Fibre Bragg grating sensor interrogation
This thesis presents a novel high-performance approach to time-division-multiplexing (TDM) fibre Bragg grating (FBG) optical sensors, known as the resonant cavity architecture. A background theory of FBG optical sensing includes several techniques for multiplexing sensors. The limitations of current wavelength-division-multiplexing (WDM) schemes are contrasted against the technological and commercial advantage of TDM. The authorâs hypothesis that âit should be possible to achieve TDM FBG sensor interrogation using an electrically switched semiconductor optical amplifier (SOA)â is then explained. Research and development of a commercially viable optical sensor interrogator based on the resonant cavity architecture forms the remainder of this thesis. A fully programmable SOA drive system allows interrogation of sensor arrays 10km long with a spatial resolution of 8cm and a variable gain system provides dynamic compensation for fluctuating system losses. Ratiometric filter- and diffractive-element spectrometer-based wavelength measurement systems are developed and analysed for different commercial applications. The ratiometric design provides a low-cost solution that has picometre resolution and low noise using 4% reflective sensors, but is less tolerant to variation in system loss. The spectrometer design is more expensive, but delivers exceptional performance with picometre resolution, low noise and tolerance to 13dB system loss variation. Finally, this thesis details the interrogatorâs peripheral components, its compliance for operation in harsh industrial environments and several examples of commercial applications where it has been deployed. Applications include laboratory instruments, temperature monitoring systems for oil production, dynamic control for wind-energy and battery powered, self-contained sub-sea strain monitoring
Re-configurable, multi-channel, high-speed FBG strain sensing system for vibration analysis in oil risers
Eight re-configurable, synchronized resonant cavity time-division- multiplexed FBG sensor interrogators provide 16,800 high-resolution measurements-per-second from 280 axially embedded strain sensors, for the analysis of vortex-shedding-induced vibration and bending in a composite oil riser pipe
Cardiac induced localised motion of the human torso detected by a long period grating fibre optic sensing scheme
Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique. © 2014 SPIE
Cardiac-induced localized thoracic motion detected by a fiber optic sensing scheme
The cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organization. The development of new diagnostic tools that are practicable and economical to scrutinize the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals up to 54 Hz covering both ballistocardiography (below 20 Hz) and audible heart sounds (20 Hz upward), using a system based on curvature sensors formed from fiber optic long period gratings. This system can visualize the real-time three-dimensional (3-D) mechanical motion of the heart by using the data from the sensing array in conjunction with a bespoke 3-D shape reconstruction algorithm. Visualization is demonstrated by adhering three to four sensors on the outside of the thorax and in close proximity to the apex of the heart; the sensing scheme revealed a complex motion of the heart wall next to the apex region of the heart. The detection scheme is low-cost, portable, easily operated and has the potential for ambulatory applications
Application of long-period-grating sensors to respiratory plethysmography
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, dλ/dR from âŒ7-nm m to âŒ9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. © 2007 Society of Photo-Optical Instrumentation Engineers
The influence of soft contact lens wear and two weeks cessation of lens wear on corneal curvature.
INTRODUCTION: Accurate corneal measurements are crucial in corneal refractive surgery (CRS) to ensure successful outcomes. Soft contact lens (SCL) wear may result in changes to corneal curvature and structure. United States Food and Drug Administration (FDA) pre-operative guidelines recommend that prior to CRS, SCL wearers cease SCL wear for "at least two weeks before examination and treatment" [1]. Corneal curvature changes induced by SCL wear may take longer than two weeks to resolve. PURPOSE: To examine the effect of SCL wear on corneal curvature before and following two weeks SCL wear cessation. To explore the possible impact of different SCL materials and years of SCL wear. METHODS: Retrospective data analysis, between a group of SCL wearers (SCL: n=45); and a non-contact lens control group (NCL: n=45). Corneal curvature parameters were measured using the Pentacam (Oculus, Germany), before and following two weeks cessation of SCL wear. RESULTS: No significant differences in keratometry or Sagittal radius of curvature between SCL and NCL groups prior to or following SCL cessation. Tangential radius of curvature showed significant inferior steepening for the SCL group prior to SCL cessation (SCL vs. NCL; 7.77±0.30mm vs. 7.90±0.30mm; p=0.04). Following two weeks cessation of SCL wear this appeared to have resolved. CONCLUSIONS: Two weeks cessation of SCL wear appears sufficient for resolution of corneal curvature changes with modern SCL materials and years of SCL wear. However, further studies with longer lens deprivation periods are required to ensure stability for all SCL wearing patients
The association of cardioprotective medications with pneumonia-related outcomes
Introduction: Little research has examined whether cardiovascular medications, other than statins, are associated with improved outcomes after pneumonia. Our aim was to examine the association between the use of beta-blockers, statins, angiotensin converting enzyme (ACE) inhibitors, and angiotensin II receptor blockers (ARBs) with pneumonia-related outcomes. Materials and Methods: We conducted a retrospective population-based study on male patients â„65 years of age hospitalized with pneumonia and who did not have pre-existing cardiac disease. Our primary analyses were multilevel regression models that examined the association between cardiovascular medication classes and either mortality or cardiovascular events. Results: Our cohort included 21,985 patients: 22% died within 90 days of admission, and 22% had a cardiac event within 90 days. The cardiovascular medications studied that were associated with decreased 90-day mortality included: statins (OR 0.70, 95% CI 0.63-0.77), ACE inhibitors (OR 0.82, 95% CI 0.74-0.91), and ARBs (OR 0.58, 95% CI 0.44-0.77). However, none of the medications were significantly associated with decreased cardiovascular events. Discussion: While statins, ACE inhibitors, and ARBs, were associated with decreased mortality, there was no significant association with decreased CV events. These results indicate that this decreased mortality is unlikely due to their potential cardioprotective effects
CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model.
Abstract
Background
Macrophages play diverse roles in mammary gland development and breast cancer. CC-chemokine ligand 2 (CCL2) is an inflammatory cytokine that recruits macrophages to sites of injury. Although CCL2 has been detected in human and mouse mammary epithelium, its role in regulating mammary gland development and cancer risk has not been explored.
Methods
Transgenic mice were generated wherein CCL2 is driven by the mammary epithelial cell-specific mouse mammary tumour virus 206 (MMTV) promoter. Estrous cycles were tracked in adult transgenic and non-transgenic FVB mice, and mammary glands collected at the four different stages of the cycle. Dissected mammary glands were assessed for cyclical morphological changes, proliferation and apoptosis of epithelium, macrophage abundance and collagen deposition, and mRNA encoding matrix remodelling enzymes. Another cohort of control and transgenic mice received carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA) and tumour development was monitored weekly. CCL2 protein was also quantified in paired samples of human breast tissue with high and low mammographic density.
Results
Overexpression of CCL2 in the mammary epithelium resulted in an increased number of macrophages, increased density of stroma and collagen and elevated mRNA encoding matrix remodelling enzymes lysyl oxidase (LOX) and tissue inhibitor of matrix metalloproteinases (TIMP)3 compared to non-transgenic controls. Transgenic mice also exhibited increased susceptibility to development of DMBA-induced mammary tumours. In a paired sample cohort of human breast tissue, abundance of epithelial-cell-associated CCL2 was higher in breast tissue of high mammographic density compared to tissue of low mammographic density.
Conclusions
Constitutive expression of CCL2 by the mouse mammary epithelium induces a state of low level chronic inflammation that increases stromal density and elevates cancer risk. We propose that CCL2-driven inflammation contributes to the increased risk of breast cancer observed in women with high mammographic density
- âŠ