2 research outputs found

    Combined germline pathogenic variants in FLCN and TP53 are associated with early onset renal cell carcinoma and brain tumors.

    No full text
    BACKGROUND: We present a family consisting of a father and his two children with an exceptional phenotype of childhood renal cell carcinoma and brain tumors. Extensive genetic testing revealed two inherited tumor predisposition syndromes in all three family members: Birt-Hogg-Dubé syndrome and Li-Fraumeni syndrome. The corresponding genes (FLCN and TP53) are both located on the short arm of chromosome 17. METHODS: We describe the phenotype and performed single nucleotide polymorphism (SNP)-based loss of heterozygosity (LOH) analysis of the tumors. RESULTS: All examined tumors showed somatic loss of the wild-type alleles of both FLCN and TP53. CONCLUSIONS: We hypothesize that a synergistic effect of both mutations caused the unusual phenotype of childhood renal cell carcinoma in this family. This family emphasizes the importance of further genetic testing if a tumor develops at an unexpected young age in an inherited cancer predisposition syndrome

    PRDM10 directs FLCN expression in a novel disorder overlapping with Birt-Hogg-Dubé syndrome and familial lipomatosis.

    No full text
    Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder characterized by fibrofolliculomas, pulmonary cysts, pneumothoraces and renal cell carcinomas. Here, we reveal a novel hereditary disorder in a family with skin and mucosal lesions, extensive lipomatosis and renal cell carcinomas. The proband was initially diagnosed with BHD based on the presence of fibrofolliculomas, but no pathogenic germline variant was detected in FLCN, the gene associated with BHD. By whole exome sequencing we identified a heterozygous missense variant (p.(Cys677Tyr)) in a zinc-finger encoding domain of the PRDM10 gene which co-segregated with the phenotype in the family. We show that PRDM10Cys677Tyr loses affinity for a regulatory binding motif in the FLCN promoter, abrogating cellular FLCN mRNA and protein levels. Overexpressing inducible PRDM10Cys677Tyr in renal epithelial cells altered the transcription of multiple genes, showing overlap but also differences with the effects of knocking out FLCN. We propose that PRDM10 controls an extensive gene program and acts as a critical regulator of FLCN gene transcription in human cells. The germline variant PRDM10Cys677Tyr curtails cellular folliculin expression and underlies a distinguishable syndrome characterized by extensive lipomatosis, fibrofolliculomas and renal cell carcinomas
    corecore