2,154 research outputs found

    Muon content of ultra-high-energy air showers: Yakutsk data versus simulations

    Full text link
    We analyse a sample of 33 extensive air showers (EAS) with estimated primary energies above 2\cdot 10^{19} eV and high-quality muon data recorded by the Yakutsk EAS array. We compare, event-by-event, the observed muon density to that expected from CORSIKA simulations for primary protons and iron, using SIBYLL and EPOS hadronic interaction models. The study suggests the presence of two distinct hadronic components, ``light'' and ``heavy''. Simulations with EPOS are in a good agreement with the expected composition in which the light component corresponds to protons and the heavy component to iron-like nuclei. With SYBILL, simulated muon densities for iron primaries are a factor of \sim 1.5 less than those observed for the heavy component, for the same electromagnetic signal. Assuming two-component proton-iron composition and the EPOS model, the fraction of protons with energies E>10^{19} eV is 0.52^{+0.19}_{-0.20} at 95% confidence level.Comment: 8 pages, 3 figures; v2: replaced with journal versio

    Spin excitations of the correlated semiconductor FeSi probed by THz radiation

    Full text link
    By direct measurements of the complex optical conductivity σ(ν)\sigma(\nu) of FeSi we have discovered a broad absorption peak centered at frequency ν0(4.2K)≈32cm−1\nu_{0}(4.2 K) \approx 32 cm^{-1} that develops at temperatures below 20 K. This feature is caused by spin-polaronic states formed in the middle of the gap in the electronic density of states. We observe the spin excitations between the electronic levels split by the exchange field of He=34±6TH_{e}=34\pm 6 T. Spin fluctuations are identified as the main factor determining the formation of the spin polarons and the rich magnetic phase diagram of FeSi.Comment: 5 pages, 4 figure

    Generation of 10^15 - 10^17 eV photons by UHE CR in the Galactic magnetic filed

    Get PDF
    We show that the deep expected in the diffuse photon spectrum above the threshold of e+e- pair production, i.e., at energies 10^15 - 10^17 eV, may be absent due to the synchrotron radiation by the electron component of the extragalactic Ultra-High Energy Cosmic Rays (UHE CR) in the Galactic magnetic filed. The mechanism we propose requires small (less than 2x10^-12 G) extragalactic magnetic fields and large fraction of photons in the UHE CR. For a typical photon flux expected in top-down scenarios of UHE CR, the predicted flux in the region of the deep is close to the existing experimental limit. The sensitivity of our mechanism to the extragalactic magnetic field may be used to improve existing bounds on the latter by two orders of magnitude.Comment: 11 pages, LaTeX, 1 .ps figure. Numerical error corrected; references adde
    • …
    corecore