8 research outputs found

    Continuation of high-dose vancomycin despite nephrotoxicity

    No full text
    10.1128/AAC.00240-12Antimicrobial Agents and Chemotherapy5663470-3471AMAC

    MIGHTEE-H i: the H i size-mass relation over the last billion years

    No full text
    We present the observed H i size-mass relation of 204 galaxies from the MIGHTEE Survey Early Science data. The high sensitivity of MeerKAT allows us to detect galaxies spanning more than 4 orders of magnitude in H i mass, ranging from dwarf galaxies to massive spirals, and including all morphological types. This is the first time the relation has been explored on a blind homogeneous data set that extends over a previously unexplored redshift range of 0 < z < 0.084, i.e. a period of around one billion years in cosmic time. The sample follows the same tight logarithmic relation derived from previous work, between the diameter (DHI) and the mass (MHI) of H i discs. We measure a slope of 0.501 ± 0.008, an intercept of -3.252+0.073-0.074, and an observed scatter of 0.057 dex. For the first time, we quantify the intrinsic scatter of 0.054 ± 0.003 dex (∼10 percent), which provides a constraint for cosmological simulations of galaxy formation and evolution. We derive the relation as a function of galaxy type and find that their intrinsic scatters and slopes are consistent within the errors. We also calculate the DHI-MHI relation for two redshift bins and do not find any evidence for evolution with redshift. These results suggest that over a period of one billion years in look-back time, galaxy discs have not undergone significant evolution in their gas distribution and mean surface mass density, indicating a lack of dependence on both morphological type and redshift

    Looking at the Distant Universe with the MeerKAT Array: Discovery of a Luminous OH Megamaser at z &gt; 0.5

    No full text
    In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H i), radio surveys to probe the cosmic evolution of H i in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep H i survey, we report the first untargeted detection of an OHM at z > 0.5, LADUMA J033046.20-275518.1 (nicknamed "Nkalakatha"). The host system, WISEA J033046.26-275518.3, is an infrared-luminous radio galaxy whose optical redshift z ≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshift z OH = 0.5225 ± 0.0001 rather than H i at lower redshift. The detected spectral line has 18.4σ peak significance, a width of 459 ± 59 km s-1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103 L ⊙, placing it among the most luminous OHMs known. The galaxy's far-infrared luminosity L FIR = (1.576 ±0.013) × 1012 L ⊙ marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts

    Chloride-Dependent Intracellular pH Regulation via Extracellular Calcium-Sensing Receptor in the Medullary Thick Ascending Limb of the Mouse Kidney

    No full text

    Review: Natural Enemies and Biocontrol of Pests of Strawberry in Northern and Central Europe

    No full text
    corecore