51 research outputs found

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Boldness by habituation and social interactions: a model

    Get PDF
    Most studies of animal personality attribute personality to genetic traits. But a recent study by Magnhagen and Staffan (Behav Ecol Sociobiol 57:295–303, 2005) on young perch in small groups showed that boldness, a central personality trait, is also shaped by social interactions and by previous experience. The authors measured boldness by recording the duration that an individual spent near a predator and the speed with which it fed there. They found that duration near the predator increased over time and was higher the higher the average boldness of other group members. In addition, the feeding rate of shy individuals was reduced if other members of the same group were bold. The authors supposed that these behavioral dynamics were caused by genetic differences, social interactions, and habituation to the predator. However, they did not quantify exactly how this could happen. In the present study, we therefore use an agent-based model to investigate whether these three factors may explain the empirical findings. We choose an agent-based model because this type of model is especially suited to study the relation between behavior at an individual level and behavioral dynamics at a group level. In our model, individuals were either hiding in vegetation or feeding near a predator, whereby their behavior was affected by habituation and by two social mechanisms: social facilitation to approach the predator and competition over food. We show that even if we start the model with identical individuals, these three mechanisms were sufficient to reproduce the behavioral dynamics of the empirical study, including the consistent differences among individuals. Moreover, if we start the model with individuals that already differ in boldness, the behavioral dynamics produced remained the same. Our results indicate the importance of previous experience and social interactions when studying animal personality empirically

    VIP Enhances Phagocytosis of Fibrillar Beta-Amyloid by Microglia and Attenuates Amyloid Deposition in the Brain of APP/PS1 Mice

    Get PDF
    Vasoactive intestinal peptide (VIP) is a multifunctional neuropeptide with demonstrated immunosuppressive and neuroprotective activities. It has been shown to inhibit Amyloid beta (Aβ)-induced neurodegeneration by indirectly suppressing the production and release of a variety of inflammatory and neurotoxic factors by activated microglia. We demonstrated that VIP markedly increased microglial phagocytosis of fibrillar Aβ42 and that this enhanced phagocytotic activity depended on activation of the Protein kinase C (PKC) signaling pathway. In addition, VIP suppressed the release of tumor necrosis factor alpha (TNF-α) and nitric oxide(NO) from microglia activated by combined treatment with fibrillar Aβ42 and low dose interferon-γ (IFN-γ). We utilized an adenovirus-mediated gene delivery method to overexpress VIP constitutively in the hippocampus of APPswPS1 transgenic mice. The Aβ load was significantly reduced in the hippocampus of this animal model of Alzheimer's disease, possibly due to the accumulation and activation of cd11b-immunoactive microglial cells. The modulation of microglial activation, phagocytosis, and secretion by VIP is a promising therapeutic option for the treatment of Alzheimer's disease(AD)

    Aggression, anxiety and vocalizations in animals: GABA A and 5-HT anxiolytics

    Full text link
    A continuing challenge for preclinical research on anxiolytic drugs is to capture the affective dimension that characterizes anxiety and aggression, either in their adaptive forms or when they become of clinical concern. Experimental protocols for the preclinical study of anxiolytic drugs typically involve the suppression of conditioned or unconditioned social and exploratory behavior (e.g., punished drinking or social interactions) and demonstrate the reversal of this behavioral suppression by drugs acting on the benzodiazepine-GABA A complex. Less frequently, aversive events engender increases in conditioned or unconditioned behavior that are reversed by anxiolytic drugs (e.g., fear-potentiated startle). More recently, putative anxiolytics which target 5-HT receptor subtypes produced effects in these traditional protocols that often are not systematic and robust. We propose ethological studies of vocal expressions in rodents and primates during social confrontations, separation from social companions, or exposure to aversive environmental events as promising sources of information on the affective features of behavior. This approach focusses on vocal and other display behavior with clear functional validity and homology. Drugs with anxiolytic effects that act on the benzodiazepine-GABA A receptor complex and on 5-HT 1A receptors systematically and potently alter specific vocalizations in rodents and primates in a pharmacologically reversible manner; the specificity of these effects on vocalizations is evident due to the effectiveness of low doses that do not compromise other physiological and behavioral processes. Antagonists at the benzodiazepine receptor reverse the effects of full agonists on vocalizations, particularly when these occur in threatening, startling and distressing contexts. With the development of antagonists at 5-HT receptor subtypes, it can be anticipated that similar receptor-specificity can be established for the effects of 5-HT anxiolytics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46351/1/213_2005_Article_BF02245590.pd

    Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama

    Get PDF
    Abstract Background Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. Results We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N’Dama cattle. We analysed genetic variation patterns in N’Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N’Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N’Dama may engage in skeletal growth as well as immune systems. Conclusions Our results imply that N’Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds
    corecore