5 research outputs found
Recommended from our members
Effect of sintering temperature and heat treatment on electrical properties of indium oxide based ceramics
Indium oxide based ceramics with bismuth oxide addition were sintered in air in the temperature range 800-1300 ÂşC. Current-voltage characteristics of In2O3-Bi2O3 ceramics sintered at different temperatures are weakly nonlinear. After an additional heat treatment in air at about 200 ÂşC samples sintered at a temperature within the narrow range of about 1050-1100 ÂşC exhibit a current-limiting effect accompanied by low-frequency current oscillations. It is shown that the observed electrical properties are controlled by the grain-boundary barriers and the heat treatment in air at 200 ÂşC leads to the decrease in the barrier height. Electrical measurements, scanning electron microscopy and X-ray photoelectron spectroscopy results suggest that the current-limiting effect observed in In2O3-Bi2O3 can be explained in terms of the modified barrier model proposed earlier for the explanation of similar effect in In2O3-SrO ceramics
Recommended from our members
Electronic properties of SnO2-based ceramics with double function of varistor and humidity sensor
This is the post-print version of the article. The official published version can be obtained from the link below - Copyright @ 2010 AD-Tech.Tin dioxide based varistor ceramics SnO2-Co3O4-Nb2O5-Cr2O3-xCuO (x=0; 0.05; 0.1 and 0.5) were made and their electrical properties were studied. The highest nonlinearity coefficient and electric field (at current density 10-3 A cm-2) were obtained for 0.1 mol.% CuO addition. It was observed that low-field electrical conductivity is increased with relative humidity, therefore, materials obtained exhibit double function of varistor and humidity sensor. The highest humidity sensitivity coefficient is found for SnO2-Co3O4-Nb2O5-Cr2O3 ceramics (without CuO). Observed varistor and humidity-sensitive properties are explained in the frames of grain-boundary double Schottky barrier concept as a decrease of the barrier height with electric field or relative humidity. Using suggested simple theory and data obtained on isothermal capacitance relaxation, the energy of the grain-boundary monoenergetic trapping states were estimated. These values are less than found for activation energy of electrical conduction (as a measure of the barrier height). These observations confirm the barrier concept.This work is funded by the Royal Society, United Kingdom (2007R1/R26999)