38 research outputs found

    Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated.</p> <p>Results</p> <p>The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 Å of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method.</p> <p>Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed.</p> <p>Conclusion</p> <p>Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.</p

    Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype

    Get PDF
    BACKGROUND: We aimed to clarify the incidence and the clinicopathological value of non-muscle myoglobin (Mb) in a large cohort of non-invasive and invasive breast cancer cases. METHODS: Matched pairs of breast tissues from 10 patients plus 17 breast cell lines were screened by quantitative PCR for Mb mRNA. In addition, 917 invasive and 155 non-invasive breast cancer cases were analysed by immunohistochemistry for Mb expression and correlated to clinicopathological parameters and basal molecular characteristics including oestrogen receptor-alpha (ERalpha)/progesteron receptor (PR)/HER2, fatty acid synthase (FASN), hypoxia-inducible factor-1alpha (HIF-1alpha), HIF-2alpha, glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX). The spatial relationship of Mb and ERalpha or FASN was followed up by double immunofluorescence. Finally, the effects of estradiol treatment and FASN inhibition on Mb expression in breast cancer cells were analysed. RESULTS: Myoglobin mRNA was found in a subset of breast cancer cell lines; in microdissected tumours Mb transcript was markedly upregulated. In all, 71% of tumours displayed Mb protein expression in significant correlation with a positive hormone receptor status and better prognosis. In silico data mining confirmed higher Mb levels in luminal-type breast cancer. Myoglobin was also correlated to FASN, HIF-2alpha and CAIX, but not to HIF-1alpha or GLUT1, suggesting hypoxia to participate in its regulation. Double immunofluorescence showed a cellular co-expression of ERalpha or FASN and Mb. In addition, Mb levels were modulated on estradiol treatment and FASN inhibition in a cell model. CONCLUSION: We conclude that in breast cancer, Mb is co-expressed with ERalpha and co-regulated by oestrogen signalling and can be considered a hallmark of luminal breast cancer phenotype. This and its possible new role in fatty acid metabolism may have fundamental implications for our understanding of Mb in solid tumours

    Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly

    Get PDF
    Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation

    Prevalence of optic disc haemorrhages in an elderly UK Caucasian population and possible association with reticular pseudodrusen—the Bridlington Eye Assessment Project (BEAP): a cross-sectional study (2002–2006)

    Get PDF
    Aims: To determine disc haemorrhages (DH) prevalence in an elderly UK population-the Bridlington Eye Assessment Project (BEAP).Methods: Thirty-degree (30°) fundus photographs (3549 participants ≥65 years) were graded for DH/macula changes. Glaucoma evaluation included Goldmann tonometry, 26-point suprathreshold visual-fields and mydriatic slit-lamp assessment for glaucomatous optic neuropathy.Results: 3548 participants with photographs in at least one eye. DH were present in 53 subjects (1.49%), increasing from 1.17% (65-69-year age-group) to 2.19% (80-84-year age53 group), p=0.06. DH was found in 9/96 (9.38%) right eyes (RE) with open angle glaucoma (OAG). Two of twelve RE (16.67%) with normal tension glaucoma (NTG) had DH. Prevalence in eyes without glaucoma was lower (32/3452, [0.93%]). Reticular pseudodrusen (RPD) occurred in 170/3212 (5.29%) subjects without DH, and 8/131 subjects (6.11%) with OAG. Twenty (20) eyes had normal tension glaucoma (NTG), 2 of whom had RPD (10%) (p=0.264). Within a logistic regression model, DH was associated with glaucoma (OR 10.2, 95% CI 5.32 - 19.72) and increasing age (OR 1.05, 95% CI 1.00-1.10, p=0.03). DH was associated with RPD (p=0.05) with univariate analysis but this was not statistically significant in the final adjusted model. There was no significant association with gender, diabetes mellitus (DM), hypertension treatment or AMD grade.Conclusion: DH prevalence is 1.5% in those over 65 years old and significantly associated with glaucoma and increasing age. There appears to be increased RPD prevalence in eyes with DH and NTG with age acting as a confounding factor. Larger studies are required to fully assess the relationship and investigate a possible shared aetiology of choroidal ischaemia

    Courier Gazette : October 17, 1939

    No full text
    The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions

    Association of strong virus-specific CD4 T cell responses with efficient natural control of primary HIV-1 infection.

    No full text
    OBJECTIVE: To investigate whether there are differences in the virus-specific CD4 T cell response during primary HIV-1 infection in patients who naturally (without antiretroviral intervention) control viral replication with differing efficiencies. METHODS: CD4 T cell responses to recombinant HIV proteins (Gag p24 and p55 and Env gp160) and an inactivated HIV-1 preparation were analysed using interferon-gamma ELISPOT assays (with CD8-depleted peripheral blood mononuclear cells) and by intracellular interferon-gamma staining and fluorescent-activated cell sorting. RESULTS: Strong HIV-specific CD4 T cell responses were detected from the earliest time-points analysed in primary infection in patients who naturally established low persisting viral loads. By contrast, HIV-specific CD4 T cell responses were weaker (at or just below the limit of detection in our assays) at similar time-points in patients who went on to establish high persisting viral loads. Statistical analysis revealed a highly significant difference (P &lt; 0.001) between the magnitudes of the Gag p24-specific response at the earliest time-point analysed in primary infection in the two sets of patients. CONCLUSIONS: Strong HIV-specific CD4 T cell responses are associated with efficient natural control of primary HIV-1 infection

    The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): Study protocol for a randomized controlled trial

    Get PDF
    Background: Gait and mobility impairments affect the quality of life (QoL) of patients with progressive multiple sclerosis (MS). Robot-assisted gait training (RAGT) is an effective rehabilitative treatment but evidence of its superiority compared to other options is lacking. Furthermore, the response to rehabilitation is multidimensional, person-specific and possibly involves functional reorganization processes. The aims of this study are: (1) to test the effectiveness on gait speed, mobility, balance, fatigue and QoL of RAGT compared to conventional therapy (CT) in progressive MS and (2) to explore changes of clinical and circulating biomarkers of neural plasticity. Methods: This will be a parallel-group, randomized controlled trial design with the assessor blinded to the group allocation of participants. Ninety-eight (49 per arm) progressive MS patients (EDSS scale 6-7) will be randomly assigned to receive twelve 2-h training sessions over a 4-week period (three sessions/week) of either: (1) RAGT intervention on a robotic-driven gait orthosis (Lokomat, Hocoma, Switzerland). The training parameters (torque of the knee and hip drives, treadmill speed, body weight support) are set during the first session and progressively adjusted during training progression or (2) individual conventional physiotherapy focusing on over-ground walking training performed with the habitual walking device. The same assessors will perform outcome measurements at four time points: baseline (before the first intervention session); intermediate (after six training sessions); end of treatment (after the completion of 12 sessions); and follow-up (after 3 months from the end of the training program). The primary outcome is gait speed, assessed by the Timed 25-Foot Walk Test. We will also assess walking endurance, balance, depression, fatigue and QoL as well as instrumental laboratory markers (muscle metabolism, cerebral venous hemodynamics, cortical activation) and circulating laboratory markers (rare circulating cell populations pro and anti-inflammatory cytokines/chemokines, growth factors, neurotrophic factors, coagulation factors, other plasma proteins suggested by transcriptomic analysis and metabolic parameters). Discussion: The RAGT training is expected to improve mobility compared to the active control intervention in progressive MS. Unique to this study is the analysis of various potential markers of plasticity in relation with clinical outcomes. Trial registration: ClinicalTrials.gov, identifier: NCT02421731. Registered on 19 January 2015 (retrospectively registered)
    corecore