18 research outputs found

    Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1968-2015; obspack_co2_1_GLOBALVIEWplus_v2.0_2016-08-05

    No full text
    This product is constructed using the Observation Package (ObsPack) framework [Masarie et al., 2014; www.earth-syst-sci-data.net/6/375/2014/]. The framework is designed to bring together atmospheric greenhouse gas (GHG) observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. ObsPack products are intended to support GHG budget studies and represent a new generation of cooperative value-added GHG data products. This product includes 264 atmospheric carbon dioxide and 6 atmospheric water vapor records derived from observations made by 40 laboratories from 19 countries. Data for the period 1968-2015 (where available) are included

    Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2016; obspack_co2_1_GLOBALVIEWplus_v3.1_2017-10-18

    No full text
    This product is constructed using the Observation Package (ObsPack) framework [Masarie et al., 2014; www.earth-syst-sci-data.net/6/375/2014/]. The framework is designed to bring together atmospheric greenhouse gas (GHG) observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. ObsPack products are intended to support GHG budget studies and represent a new generation of cooperative value-added GHG data products. This product includes 378 atmospheric carbon dioxide datasets derived from observations made by 46 laboratories from 19 countries. Data for the period 1957-2016 (where available) are included

    Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2016; obspack_co2_1_GLOBALVIEWplus_v3.2_2017-11-02

    No full text
    This product is constructed using the Observation Package (ObsPack) framework [Masarie et al., 2014; www.earth-syst-sci-data.net/6/375/2014/]. The framework is designed to bring together atmospheric greenhouse gas (GHG) observations from a variety of sampling platforms, prepare them with specific applications in mind, and package and distribute them in a self-consistent and well-documented product. ObsPack products are intended to support GHG budget studies and represent a new generation of cooperative value-added GHG data products. This product includes 354 atmospheric carbon dioxide datasets derived from observations made by 46 laboratories from 19 countries. Data for the period 1957-2016 (where available) are included

    Temporal Trends of Phosphorus Cycling in a Tropical Montane Forest in Ecuador During 14 Years

    Get PDF
    Increased bioavailability of P can have a negative impact on plant biodiversity. In an approximately 9-ha catchment under N + P-limited megadiverse tropical montane forest in Ecuador, we budgeted all major P fluxes and determined whether the P fluxes changed from 1999 to 2013. Furthermore, we assessed which external drivers (rainfall, total P and acid deposition) caused this potential change. Mean (±SD) annual P deposition (bulk+dry) was 240 ± 270 mg/m2, with the SD reflecting the interannual variation. The annual P flux to the soil via throughfall+stemflow+litterfall was 1,400 ± 170 mg/m2 of which 18 ± 9.2% was leached to below the organic layer. The mineral soil retained 80 ± 12% of the P leached from the organic layer. The mean annual P weathering rate was 79 ± 63 mg/m2. The sum of P fluxes was approximately 5 times larger above than below the mineral soil surface, illustrating that P was tightly cycled in the biological part of the forest. The mean annual canopy budget was negative (−120 ± 280 mg/m2); that is, P was leached from the canopy. Throughfall was the largest source of dissolved P. The P catchment budget (total deposition-streamflow) was positive (200 ± 270 mg/m2); that is, P was retained, mainly in the soil organic layer. From 1999 to 2013, P fluxes with throughfall, stemflow, and streamflow increased significantly. The strongest driver of the P budgets of the canopy and the catchment was total P deposition. Our results demonstrate that mainly biological processes retained deposited P in the vegetation and the organic layer enhancing the internal P cycle
    corecore