455 research outputs found

    Life history of voles: growth and maturation in seasonal cohorts of the root vole

    Get PDF

    Plankton ecology: The past two decades of progress

    Get PDF
    This is a selected account of recent developments in plankton ecology. The examples have been chosen for their degree of innovation during the past two decades and for their general ecological importance. They range from plankton autecology over interactions between populations to community ecology. The autecology of plankton is represented by the hydromechanics of plankton (the problem of life in a viscous environment) and by the nutritional ecology of phyto- and zooplankton. Population level studies are represented by competition, herbivory (grazing), and zooplankton responses to predation. Community ecology is represented by the debate about bottom- up vs. top-down control of community organization, by the PEG model of seasonal plankton succession, and by the recent discovery of the microbial food web

    Temporal and between-site variation in helminth communities of bank voles (Myodes glareolus) from N.E. Poland. 1. Regional fauna and component community levels

    Get PDF
    Helminth infections were studied in bank voles (Myodes glareolus) from 3 woodland sites in N.E. Poland in the late summers of 1999 and 2002, to assess the temporal stability of derived statistics describing the regional helminth fauna and component community structure, and spatial influence on the latter. Regional helminth fauna changed dramatically between the two years, primarily due to a fall in the abundance of Syphacia petrusewiczi but was partially compensated for by an increase in Mesocestoides lineatus and Cladotaenia globifera. It was dominated by nematodes overall, but more so in 1999 than in 2002 when larval cestodes were more frequent. Most derived parameters for component community structure varied considerably between sites and the two surveys, the hierarchical order for sites not being maintained between surveys. They were susceptible to the disproportionate influence of three relatively rare, unpredictable species with the greatest overall aggregated distribution among hosts. Jaccard’s similarity index was less influenced by the rare species, showing greater stability between sites and across years. In conclusion, temporal variation confounded any site-specific characteristics of the summary measures quantified in this study and their usefulness is therefore restricted to the years in which the surveys were conducted

    Interactions between Predation and Resources Shape Zooplankton Population Dynamics

    Get PDF
    Identifying the relative importance of predation and resources in population dynamics has a long tradition in ecology, while interactions between them have been studied less intensively. In order to disentangle the effects of predation by juvenile fish, algal resource availability and their interactive effects on zooplankton population dynamics, we conducted an enclosure experiment where zooplankton were exposed to a gradient of predation of roach (Rutilus rutilus) at different algal concentrations. We show that zooplankton populations collapse under high predation pressure irrespective of resource availability, confirming that juvenile fish are able to severely reduce zooplankton prey when occurring in high densities. At lower predation pressure, however, the effect of predation depended on algal resource availability since high algal resource supply buffered against predation. Hence, we suggest that interactions between mass-hatching of fish, and the strong fluctuations in algal resources in spring have the potential to regulate zooplankton population dynamics. In a broader perspective, increasing spring temperatures due to global warming will most likely affect the timing of these processes and have consequences for the spring and summer zooplankton dynamics

    Uptake and depuration of gold nanoparticles in Daphnia magna

    Get PDF
    This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.Peer reviewed: YesNRC publication: Ye

    The Geography of Fear: A Latitudinal Gradient in Anti-Predator Escape Distances of Birds across Europe

    Get PDF
    All animals flee from potential predators, and the distance at which this happens is optimized so the benefits from staying are balanced against the costs of flight. Because predator diversity and abundance decreases with increasing latitude, and differs between rural and urban areas, we should expect escape distance when a predator approached the individual to decrease with latitude and depend on urbanization. We measured the distance at which individual birds fled (flight initiation distance, FID, which represents a reliable and previously validated surrogate measure of response to predation risk) following a standardized protocol in nine pairs of rural and urban sites along a ca. 3000 km gradient from Southern Spain to Northern Finland during the breeding seasons 2009–2010. Raptor abundance was estimated by means of standard point counts at the same sites where FID information was recorded. Data on body mass and phylogenetic relationships among bird species sampled were extracted from the literature. An analysis of 12,495 flight distances of 714 populations of 159 species showed that mean FID decreased with increasing latitude after accounting for body size and phylogenetic effects. This decrease was paralleled by a similar cline in an index of the abundance of raptors. Urban populations had consistently shorter FIDs, supporting previous findings. The difference between rural and urban habitats decreased with increasing latitude, also paralleling raptor abundance trends. Overall, the latitudinal gradient in bird fear was explained by raptor abundance gradients, with additional small effects of latitude and intermediate effects of habitat. This study provides the first empirical documentation of a latitudinal trend in anti-predator behavior, which correlated positively with a similar trend in the abundance of predators.TG was supported by the Human Frontier Science Program (RGY69/07) and MSM6198959212. JJ was supported by the EU Regional Development Foundation for the project (A31026). MD was funded by the project RISKDISP (CGL2009-08430) of the Spanish Ministerio de Ciencia e Innovación. GM was supported by TÁMOP-4.2.1./B-09/1-KMR-2010-0005 and TÁMOP-4.2.2./B-10/1-2010-0023 grants

    Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The population structure of cyclical parthenogens such as water fleas is strongly influenced by the frequency of alternations between sexual and asexual (parthenogenetic) reproduction, which may differ among populations and species. We studied genetic variation within six populations of two closely related species of water fleas of the genus <it>Daphnia </it>(Crustacea, Cladocera). <it>D. galeata </it>and <it>D. longispina </it>both occur in lakes in the Tatra Mountains (Central Europe), but their populations show distinct life history strategies in that region. In three studied lakes inhabited by <it>D. galeata</it>, daphnids overwinter under the ice as adult females. In contrast, in lakes inhabited by <it>D. longispina</it>, populations apparently disappear from the water column and overwinter as dormant eggs in lake sediments. We investigated to what extent these different strategies lead to differences in the clonal composition of late summer populations.</p> <p>Results</p> <p>Analysis of genetic variation at nine microsatellite loci revealed that clonal richness (expressed as the proportion of different multilocus genotypes, MLGs, in the whole analysed sample) consistently differed between the two studied species. In the three <it>D. longispina </it>populations, very high clonal richness was found (MLG/N ranging from 0.97 to 1.00), whereas in <it>D. galeata </it>it was much lower (0.05 to 0.50). The dominant MLGs in all <it>D. galeata </it>populations were heterozygous at five or more loci, suggesting that such individuals all represented the same clonal lineages rather than insufficiently resolved groups of different clones.</p> <p>Conclusions</p> <p>The low clonal diversities and significant deviations from Hardy-Weinberg equilibrium in <it>D. galeata </it>populations were likely a consequence of strong clonal erosion over extended periods of time (several years or even decades) and the limited influence of sexual reproduction. Our data reveal that populations of closely related <it>Daphnia </it>species living in relatively similar habitats (permanent, oligotrophic mountain lakes) within the same region may show strikingly different genetic structures, which most likely depend on their reproductive strategy during unfavourable periods. We assume that similar impacts of life history on population structures are also relevant for other cyclical parthenogen groups. In extreme cases, prolonged clonal erosion may result in the dominance of a single clone within a population, which might limit its microevolutionary potential if selection pressures suddenly change.</p
    corecore